

GATE -ME THEORY OF MACHINES

Table Of Content

Simple Mechanism	01
Motion Analysis	04
Gears	04
Gear Train	06
Gyroscope	07
Governor	08
Dynamics & Flywheel	10
Balancing	11
Cams & Follower	13

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

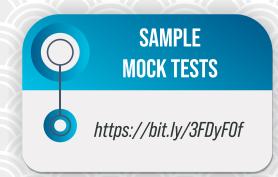
OUR COURSES

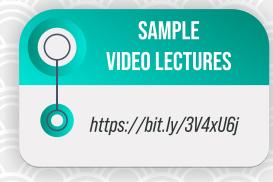
Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests


Module Wise Tests



Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Theory of Machines

Chapter 1: Simple Mechanism

Link: Smallest unit of machine, which should transfer relative motion.

Spring: used as restoring forces, we cannot consider it as kinematic link.

Classification of Kinematic Pairs

A. On the Basic of DOF

Example:

1)(cylindrical pair) C – pair [DOF = 2]

(Spatial joint)

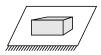
2)(Prismatic pair) P – pair [DOF = 1]

(Planar joint)

3)(Revo<mark>lute pair) R – pair [DOF = 1] (Pla-</mark>

nar joint)

4)H – pair [DOF = 1] (Screw pair)


(Spatial joint)

5)G - pair [DOF = 3] (Spherical pair)

(Spatial joint)

6)E – pair [DOF = 3] (Planar or Evena

pair) **Eg:** Cube on surface

B. According to type of contact:

• Lower pair (surface contact)

Linear motion pairsDOF = 1 Eg: R, P, H pair

Surface motion pairs

DOF > 1 Eg: C, E pair

 Higher pair (Point/Line contact, DOF = 2)

 Wrapping pair when one link wrapped over the other link

All the surface motion pairs will violate Kutzbach equation.

C. On the basic of type of closure

Self-closed pair (Permanent contact)

Eg: Turning, sliding pair

Forced closed pair (open pair)

Eg: H.P in cam & follower

Door closure

Automatic clutch

D. On the basis of motion between links

• Completely constraint motion

(Self-desired motion)

Eg: P pair

Successfully constraint motion

(Forcefully desired motion)

Eg; Foot step bearing

• Incompletely constraint motion

(Unconstraint motion)

Eg: C- pair

Degree of Freedom (DOF):

$$3(n-1)-2J-h-F_r$$

Where n = no. of link

J = No. of binary joint

h = no. of higher pair (Kutzbach equation) valid for R-pair; P pair.

- DOF < 0(Super structure)
- DOF = 0 Structure/Frame
- DOF > 1
 - DOF = 1 constraint/Kinematic mechanism
 - DOF > 1 unconstraint mechanism

 F_r = redundant dof

Grubler's equation:

$$3n - 2j = 4$$

Here DOF = 1; h = 0

Minimum number of link to form mechanism = 4.

Modified Kutzbach Equation:

$$DOF = 3[n - n_r - 1] - 2[J - J_r] - h - F_r$$

Where:

n = No. of links

 $n_r = \text{No. of redundant links}$

 J_r = No. of redundant joints

J = No. of Binary joint

 F_r = redundant dof

If there are n no. of links, then possible inversion will be \leq n

Grashof's Law:

A.
$$S + l \le p + q$$

S= shortest link

l = longest link

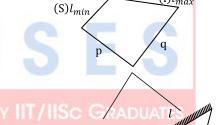
If S (Shortest link) fixed = Double crank mechanism.

If S is adjacent to fixed = Crank rocker

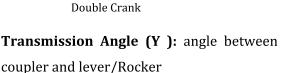
If S is opposite to fixed = Double Rocker or Lever mechanism.

$B. \quad S+l > p+q$

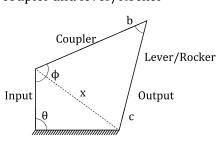
Double rocker only


C. If
$$S + l = p + q$$

 All links are equal length (Rhombus linkage)



Double crank only.


• Two links of equal length

AMININ S

Crank Rocker

$$Y_{min}$$
 at $\theta = 0^{\circ}$
 Y_{max} at $\theta = 180^{\circ}$ (but before this check $x < b + c$)

Toggle Positions $\phi = 180^{\circ}$ and $\phi = 0^{\circ}$

Mechanical Advantage (MA):

$$= \frac{F_{\text{output}}}{F_{\text{input}}} = \frac{(\text{Torque})_{\text{output}}}{(\text{Torque})_{\text{input}}}$$

$$= \frac{\omega_{input}}{\omega_{output}} \times \eta_{mech}$$

MA = ∞ at Toggle positions.

 ω = Angular velocity

Simple Mechanism:

- A. Four bar mechanism
- B. Single slider crank mechanism
- C. Double slider crank mechanism

A. Four Bar Mechanism:

Inversions:

- Double crank mechanism
 Eg: Coupling rod of locomotives
- Crank rocker mechanism

Eg: Beam engine

Double rocker mechanism

Eg: Watt's indicator

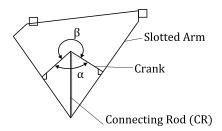
B. Single Slider Crank Mechanism

Cylinder fixed

Eg: Compressor, engine

• Crank fixed:

Eg: Whitworth QRM, Rotary IC engine

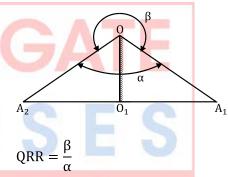

- Connecting Rod (CR) Fixed:
 - Eg: Crank slotted lever QRM

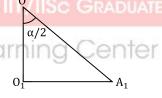
Oscillatory cylinder engine

• Piston/Slider Fixed:

Eg: Hand pump, Pendulum pump

C. Crank Slotted Lever Mechanism (CR is fixed):




$$QRR = \frac{\beta}{\alpha} > 1 \text{ (Always} > 1)$$

 $Quick Return ratio(QRR) = \frac{Cutting time}{Ruturn Time}$

Stroke length =
$$\frac{2 \times \binom{\text{Length of }}{\text{slotted bar}} \binom{\text{Crank}}{\text{length}}}{\text{Length of CR}}$$

Whitworth QRM: (Crank fixed)

$$\cos\left(\frac{\alpha}{2}\right) = \frac{\text{crank length}}{\text{CR length}}$$

Stroke length = $A_1A_2 = 2 (O_1A_1)$

D. Double Slider Crank Mechanism:

- Slotted bar fixed: Elliptical trammels
- One slider fixed: Scotch yoke mechanism.
- CR fixed: Oldham's coupling.

Chapter 2: Motion Analysis

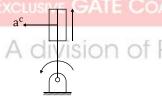
Number of Instantaneous Centre

$$=n_{C_2}=\frac{n(n-1)}{2}$$

Where n = No. of Links

Kennedy's Theorem:

For relative motion between No. of links in a mechanism any three links, their I-centre Must lie on a straight line.


Theorem of Angular Velocity:

- I_{mn}
 - Can be treated on link m
 - Can be treated on link n

$$V_{I_{nn}} = \omega_n(I_{mn}I_{1m}) = \omega_n(I_{mn}I_{1n})$$

If I_{1n} and I_{1m} both are on same side of I_{mn} then sense of rotation is same for ω_m and ω_n

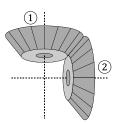
Coriolis Acceleration (ac):

$$a^{c} = 2(\overrightarrow{\omega} \times \overrightarrow{V})$$

Where, V = Velocity of slider

 ω = angular velocity of link on which slider is sliding.

Direction: Rotate the \overrightarrow{V} in the same sense as of $\overrightarrow{\omega}$.



Chapter 3: GEARS

Positive Drive: Slip is not possible. Eg: (gears)

Negative Drive: Slip is possible, Eg: Belt, rope, Chain.

Mitre Gear:

Similar Gear at 90°

Circular Pitch:

$$(P_{c}) = \frac{\pi D}{T}$$

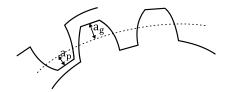
Where D = Diameter of gear /pinion

T = No. of teeth

Module (m):

 $=\frac{D}{T}$ (Module is same for mating gears)

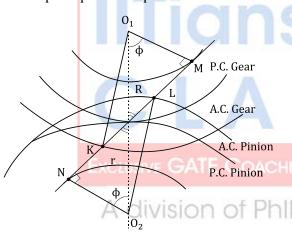
Diametral Pitch $(P_d): \frac{T}{D}$


$$P_{d} \cdot P_{c} = \frac{T}{D} \times \frac{\pi D}{T} = \pi$$

Working depth = Addendum + Dedendumclearance.

= sum of addendum of both mating gears.

Tooth space – Tooth thickness of mating gear = Backlash


Where $a_g = Addendum$ of gear $a_p = Addendum$ of Pinion

Law of Gearing:

Line of action must always pass through the fixed point (pitch point) on the line joining the centres of rotation of gear.

$$V_{\text{sliding}} = V_{\text{s}} = (\omega_1 + \omega_2)QP$$

= Sum of angular Velocity × distance between pitch point and point of contact.

A.C = Addendum circle

Path of contact = Path of approach (KP) + path of recess (PL)

$$KP = \sqrt{R_A^2 - R^2 \cos^2 \varphi} - R \sin \varphi$$

$$PL = \sqrt{r_A^2 - r^2 \cos^2 \phi} - r \sin \phi$$

$$\rightarrow \text{Arc of contact} = \frac{\text{Path of contact}}{\cos \phi} = \frac{\text{KL}}{\cos \phi}$$

Angle turned by pinion

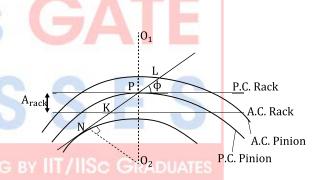
$$= \frac{\text{Arc of contact}}{r} \quad \text{(in radian)}$$

→ Angle turned by Gear

$$= \frac{\text{Arc of contact}}{R} \quad \text{(in radian)}$$

→ Contact ratio =
$$\frac{\text{Arc of contact}}{\text{circular pitch }(P_c)} \ge 1$$

→ Gear ratio =
$$G = \frac{T}{t}$$


Where T = No. of teeth on gear

t = No. of teeth on pinion.

$$\rightarrow \text{Velocity ratio} = \frac{\omega_p}{\omega_g} = \frac{T}{t} > 1$$

$$\Rightarrow \frac{\omega_g}{\omega_p} = \frac{t}{T} < 1$$

→Path of contact in rack and pinion

 $A_{rack} = Addendum of rack$

A.C pinion ⇒ Addendum circle of pinion

P.C. pinion \Rightarrow pitch circle of pinion

$$\begin{aligned} & \text{K.L} = \text{kP} + \text{PL} \\ & = \frac{A_{\text{rack}}}{\sin \varphi} + \sqrt{r_{\text{A}}^2 - r^2 \cos^2 \varphi} - r \sin \varphi \end{aligned}$$

Methods to Prevent Interference:

- Under cut gears
- Increase φ(Pressure angle)
- By stubbing the teeth
- Increasing No. of teeth

IITians GATE

Minimum No. of teeth required for pinion?

Teeth on Gear:

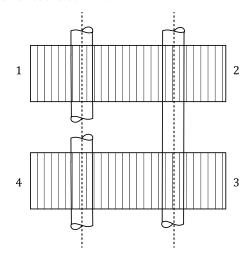
$$\Rightarrow T_{min} = \frac{2A_G}{\sqrt{1 + \frac{1}{G}(\frac{1}{G} + 2)\sin^2\phi} - 1}$$

Teeth on Pinion:

$$t_{min} = \frac{2A_P}{\sqrt{1 + G(G+2)\sin^2\varphi} - 1}$$

 $A_G=$ Fractional addendum of gear $A_P=$ Fractional Addendum of pinion Always make gear safe first if $A_G=A_P$ For Rack and Pinion

$$t_{min} = \frac{2A_R}{\sin^2 \varphi}$$


In all, $A_P \\ A_R$ These are fractional addendum

 $m \cdot A_P = A$ of pinion

$$m \cdot A_G = A$$
 of Gear

 $m \cdot A_R = A$ of Rack

Reverted Gear Train:

m = module of 1, 2

m' = module of 3, 4

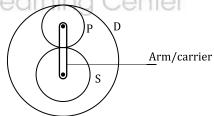
$$SR = \frac{\omega_1}{\omega_4} = \frac{T_2 T_4}{T_1 T_3}$$

$$r_1 + r_3 = r_3 + r_4$$

$$m\left(\frac{T_1}{2} + \frac{T_2}{2}\right) = m'\left(\frac{T_3}{2} + \frac{T_4}{2}\right)$$

If speed reduction is same

$$\frac{T_2}{T_1} = \frac{T_4}{T_2}$$


LÜSIVE GATE COACHING BY IIT/IISG GRADUA

Chapter 4: GEAR TRAINS

Speed ratio = (SR) =
$$\frac{\omega_1}{\omega_2} = \frac{\omega_{driver}}{\omega_{driven}}$$

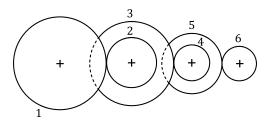
Train value =
$$\frac{1}{SR}$$

Planetary Gear Train (Epicyclic):

$$r_s + 2r_p = r_D$$

$$T_s + 2T_p = T_D$$

$$\Rightarrow$$
 T_{input} + T_{output} + T_{fixing} = 0


$$\rightarrow \eta_{GT} [T_{input} \cdot \omega_{input}] + T_{output} \times \omega_{output}$$

$$- 0$$

 $\eta_{GT} = \text{Efficieency of gear train}$

Compound Gear Train:

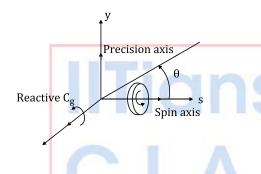
$$SR = \frac{\omega_1}{\omega_6} = \frac{T_2 T_4 T_6}{T_1 T_3 T_5}$$

T = No. of teeth on gears.

Chapter 5: GYROSCOPE

Gyrosope Couple
$$(C_g) = L \times \frac{d\theta}{dt}$$

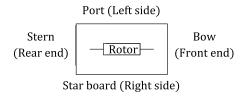
$$c_g = I.\omega.\omega_p$$


 $L = Angular momentum of rotor = I. \omega$

 $\omega = \text{Angular Velocity of rotor}$

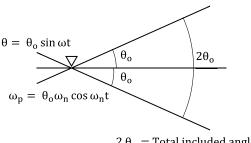
I = Mass moment of Inertia of rotor

 $\label{eq:omega_p} \omega_p = \text{Angular Velocity of axis on which rotor}$ is rotating.


Calculation of Reactive Gyroscopic Couple:

Reactive c_g direction

= Spin axis (ω) × Preission axis (ω_p)


Gyroscopic Effects in Water Boat:

Motion

1. Pitching:

Up and down movement of bow and stern

 $2 \theta_o = \text{Total included angle}$

$$\omega_n = \frac{2\pi}{T} (\text{Natural frequency})$$

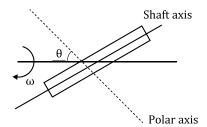
$$\left(\omega_{p}\right)_{max}=\theta_{o}\times\omega_{n}=\theta_{o}\times\frac{2\pi}{T}$$

T = Time period of pitching

$$C_g = I\omega(\omega_p)_{max}$$

2. Steering:

Left or right turn of ship

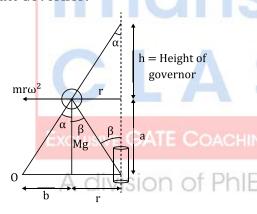

$$C_g = I\omega\omega_p$$

$$\omega_p = \frac{V}{R} = \frac{Velocity of boat}{Radius of curvature / circle}$$

3. Rolling:

No couple formed as precision axis and spin axis coincide.

Gyroscopic couple by bearing due to misalignment of disc:


$$G = \frac{m}{8}\omega^2 r^2 \sin(2\theta)$$

 $\theta = misalignment$ in degree

Chapter 6: GOVERNORS

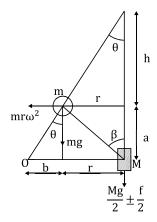
- Governor
 - o Inertia Governor
 - o Centrifugal Governor
 - Pendulum TypeEg: Watt Governor
 - Gravity Controlled
 - Porter
 - Proell
 - Spring Controlled
 - Hartnell
 - Hartung
 - Pickering
 - Wilson Hartnell

1. Watt Governor:

$$\sum M_o = 0$$

$$mg b = mr\omega^2(a)$$

$$mr\omega^2 = mg\left(\frac{b}{a}\right)$$


$$r\omega^2=g\tan\alpha$$

$$r\omega^2 = g \times \frac{r}{\omega}$$

$$\omega^2 = \frac{g}{h}$$

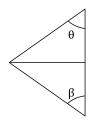
$$N^2 = \frac{895}{h}$$

2. Porter Governor:

$$\begin{split} \sum & M_o = 0 \\ \omega^2 &= \frac{2mg + (Mg \pm f)(1+k)}{2mh} \end{split}$$

$$k = \frac{\tan \beta}{\tan \theta}$$

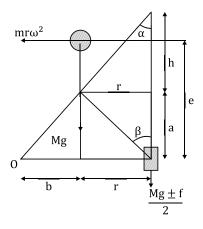
$$f = friction force on sleeve.$$


Case 1:

If f (friction) = 0

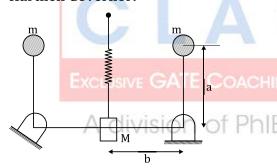
$$\omega^2 = \frac{2mg + [Mg][1 + k]}{2mh}$$

Case 2://ISC GRADUATES


$$\omega^2 = \left(\frac{m+M}{m}\right)\frac{g}{h}$$

$$\theta = \beta$$
 arms are of equal length $M = Mass$ of Sleeve

3. Proell Governor:



$$\begin{split} \sum & M_o = 0 \\ \omega^2 &= \frac{a}{e} \bigg[\frac{2 \text{ mg} + (\text{Mg} \pm f)(1 + k)}{2 \text{ mh}} \bigg] \end{split}$$

If
$$f = 0$$
, and $k = 1$

$$\omega^2 = \frac{a}{e} \left[\frac{m+M}{m} \right] \times \frac{g}{h}$$

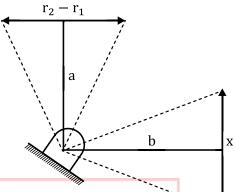
4. Hartnell Governor:

$$mr_1\omega_1^2(a) = \frac{Mg + fs_1 \pm f}{2}$$
 (b)

$$mr_1\omega_1^2(a) = \frac{Mg + fs_2 \pm f}{2}$$
 (b)

$$F_{C} = \underbrace{mr\omega^{2}}_{0}$$

$$a$$


$$\underbrace{\frac{Mg + f_{s} \pm f}{2}}$$

 f_s = spring force, f = frictional force

If
$$f = 0$$

$$\frac{r_1 \omega_1^2}{r_2 \omega_2^2} = \frac{Mg + f_{s_1}}{Mg + f_{s_2}}$$

Total sleeve movement $(x) = \frac{b}{a} (r_2 - r_1)$

Extreme Positions

$$(f_{c_2} - f_{c_1}) \frac{2a}{b} = f_{s_2} - f_{s_1}$$

Additional compression of spring

$$(x_2 - x_1) = \frac{b(r_2 - r_1)}{a}$$

Stiffness of spring (k) =
$$\frac{2(f_{c_2} - f_{c_1})}{(r_2 - r_1)} \left(\frac{a}{b}\right)^2$$

Sensitiveness = $\frac{\text{Range of speed}}{\text{Mean speed}}$

$$=\frac{N_2-N_1}{N}=\frac{2(N_2-N_1)}{(N_2+N_1)}$$

$$Sensitivity = \frac{1}{Sensitiveness} = \frac{N_1 + N_2}{2(N_2 - N_1)}$$

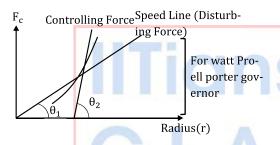
 $Sensitivity = \infty \ for \ isochronous \ governor$

Hunting: An excessively fast to & fro motion of sleeve between stopper.

Isochronism: A governor is said to be isochronous if its equilibrium speed is constant for all radii of rotations.

Range of speed =
$$N_{max} - N_{min} = 0$$

This means ω is same for all sleeve position which is not possible in case of Watt and porter.

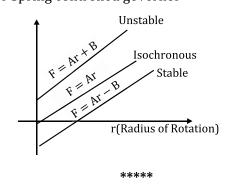

For Hartnell governor: it can be made isochronous governor

$$\omega_1 = \omega_2 = \omega$$

$$\frac{r_2}{r_1} = \frac{Mg + F_{s_2}}{Mg + F_{s_1}}$$

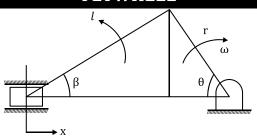
Stability of Governor:

Stable governor: Slope of restoring force > Slope of disturbing force.



 $\theta_2 > \theta_1$ for stable governor

$$\frac{\mathrm{dF(r)}}{\mathrm{dr}} > \mathrm{m}\omega^2$$


If $r \uparrow \Rightarrow N \uparrow$ (Stable governor)

For Spring controlled governor

A division of Phile

Chapter 7: DYNAMICS & FLYWHEEL

n = obliquity ratio

r = radius of crank

l = length of connecting rod

$$n = \frac{l}{r}$$

 $l \sin \beta = r \sin \theta$

$$x = r \left[1 - \cos \theta + n - \sqrt{n^2 - \sin^2 \theta} \right]$$

$$V = r\omega \left[\sin \theta + \frac{\sin 2\theta}{2n} \right]$$

$$a = r\omega^2 \left[\cos \theta + \frac{\cos 2\theta}{n} \right]$$
Approx equation

$$\omega_{cR} = \frac{\omega \cos \theta}{n} = \frac{d\beta}{dt}$$

$$\alpha_{cR} = \frac{-\omega^2 \sin \theta}{n}$$
Valid when n is large

V= Velocity of piston

a = acceleration of piston

 ω_{cR} = Angular Velocity of connecting rod

 $\alpha_{cR} = Angular$ acceleration of connecting

rod

Inertia force on piston = $m a = F_i$

$$= m \left[r\omega^2 \left(\cos \theta + \frac{\cos 2\theta}{n} \right) \right]$$

 $F_{primary} = mr\omega^2 \cos \theta$

$$F_{secondary} = mr\omega^2 \left(\frac{\cos 2\theta}{n}\right)$$

m = mass of piston

F = net force on piston

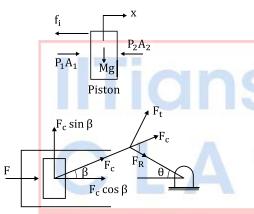
$$= F_p - F_i + F_g - F_f$$

Where;
$$F_p = P_1 A_1 - P_2 A_2$$

$$F_g = Mg$$

 F_f = Kinetic friction

 P_1 = pressure of gas at cover end


$$A_1 = \left(\frac{\pi}{4}\right) D^2 \;\; \text{, where } D$$

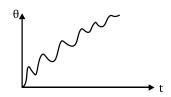
= diameter of piston

P₂ =pressure of gas at crank end side of piston

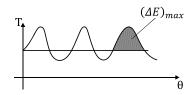
$$A_2 = \frac{\pi}{4} \ (D^2 - d^2)$$

d =diameter of piston rod

1.
$$F_{CR} = \frac{F}{\cos \beta}$$
 EXCLUSIVE GATE COACHII


2. $F_n = F_c \sin \beta = \text{Normal thrust to cylinder}$ walls

$$3. F_r = F_c \cos(\theta + \beta)$$


 F_r = Radial thrust to crank shaft bearing

4. Crank effort
$$(F_t) = F_c \sin(\theta + \beta)$$

= $\frac{F}{\cos \beta} [\sin(\theta + \beta)]$

5. Torque on crank $(T) = F_t \times radius(r)$

Flywheel:

Change in energy of flywheel

$$= (\Delta E)_{\text{max}} = \frac{1}{2} I \left(\omega_{\text{max}}^2 - \omega_{\text{min}}^2 \right)$$

$$(\Delta E)_{max} = I\omega^2 C_s = E_{max} - E_{min}$$

$$\omega = \frac{\omega_{max} + \omega_{min}}{2}$$

$$C_s = \frac{\omega_{max} - \omega_{min}}{\omega}$$

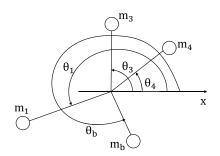
= Coefficient speed fluctutation

 C_E = Coefficient of energy fluctuation

$$= \frac{E_{max} - E_{min}}{(WD)_{cycle}}$$

$$(WD)_{cycle} = T_{mean} \times \theta_{cycle}$$

WD = work done

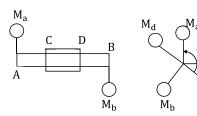

Chapter 8: BALANCING

- Static Balancing (Balancing of forces) $\sum \vec{F} = 0$
 - Dynamic Balancing

$$\Sigma \vec{F} = 0$$

$$\sum \overrightarrow{M}_{R} = 0$$

Balancing of several masses rotating in Same plane:


 $m_b = Balancing mass$

$$\sum F_H = 0$$
, $\sum F_V = 0$

$$\sum mr \cos \theta = 0$$

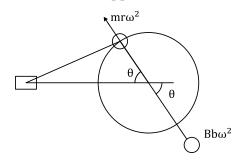
$$\sum \min \theta = 0$$

Balancing of several masses rotating in different plane:

$$\Sigma F = 0$$
; $\Sigma M = 0$

Table can be made and get the answer

Balancing of Reciprocating Masses:


$$F_{Inertia}$$
 on Piston = $mr\omega^2 \left[\cos\theta + \frac{\cos 2\theta}{n}\right]$

Only primary force is balanced \Rightarrow which is maximum at $\theta = 0^{\circ}$ and 180°

 2^{nd} force is maximum 4 times in one rotation and negligible at moderate speeds.

A division of PhIE

To Balance primary force a balancing mass is attached opposite to crank.

B = Balance mass

b = Radial distance of balance mass

$$mr\omega^2\cos\theta = Bb\omega^2\cos\theta$$

$$mr = Bb$$

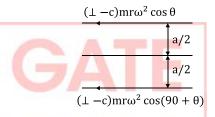
We will go for partial Balancing

$$cmr = Bb$$

Funbalance (along horizontal direction)

$$= (1 - c) mr\omega^2 \cos \theta$$

 $F_{unbalance}$ (\perp^r to line of stroke)


$$= cmr\omega^2 sin \theta$$

$$F_{R} = \sqrt{((F_{unbalance})_{H})^{2} + ((F_{unbalance})_{\perp}^{r})^{2}}$$

For minimum
$$F_R = \frac{dF_R}{dc} = 0$$

Resultant unbalance is minimum when c = 1/2.

Balancing of Locomotive:

1. Tractive Force (F_t):

$$(1-c)$$
mr ω^2 cos θ

$$+ (1 - c) mr \omega^2 \cos(90 + \theta)$$

 F_t is max at $\theta = 135^\circ$ and 315°

2. Swaying Couple (S):

$$S = (1 - c)mr\omega^{2} \cos \theta \left(\frac{a}{2}\right)$$
$$- (1 - c)mr\omega^{2} \cos(90 + \theta)$$
$$\times \frac{a}{2}$$
$$S = (1 - c)mr\omega^{2} \left(\frac{a}{2}\right) (\cos \theta + \sin \theta)$$

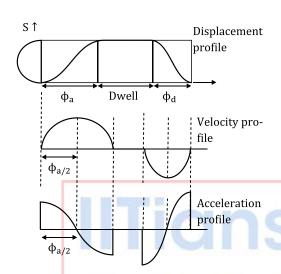
3. Hammer Blow:

It is unbalanced vertical force due to balancing mass (B) at radius (b).

$$P = Bb\omega^2 \sin \theta = cmr\omega^2 \sin \theta$$

$$P_{max}$$
 at $\theta = 90^{\circ}$ and 270°

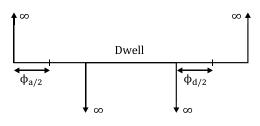
 S_{max} at $\theta=45^{\circ}$ and 225 $^{\circ}$


Chapter 9: CAMS & FOLLOWER

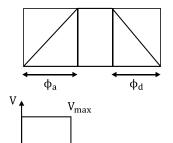
Types of motion of Follower

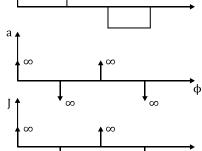
1. SHM (Simple Harmonic Motion):

 ϕ_a = Angle of ascent


 ϕ_d = Angle of descent

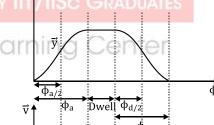
(Displacement)y =
$$\frac{h}{2} \left(1 - \cos \left(\frac{\pi \theta}{\phi_a} \right) \right)$$

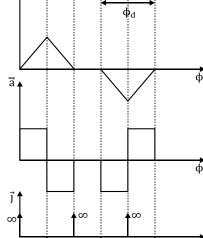

$$V = \frac{\pi h \omega}{2 \phi_a} \sin \left(\frac{\pi \theta}{\phi_a} \right)$$


$$a = \frac{\pi^2 h \omega^2}{2\phi_a^2} \left[\cos \left(\frac{\pi \theta}{\phi_a} \right) \right]$$
Jerk profile

$$J = \frac{da}{dt}$$

2. Uniform Velocity (Worst motion)

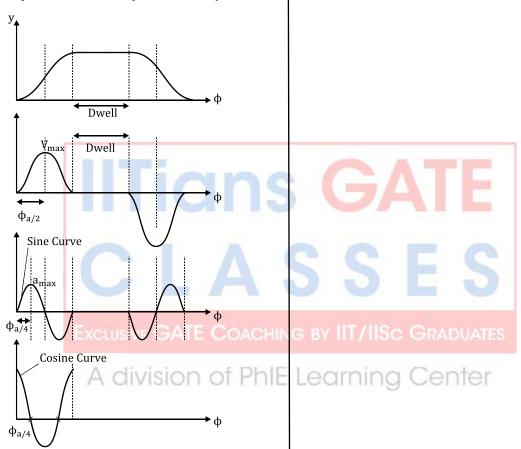



$$y = \frac{h\theta}{\varphi_a}$$

$$V = \frac{h\omega}{\Phi_a}$$

$$a = 0, J = 0$$

Uniform Acceleration:



$$y = \frac{2h\theta^2}{\varphi_a^2}$$

$$V=\frac{4h\theta\omega}{\varphi_a^2}$$

$$a = \frac{4h\omega}{\varphi_a^2}$$

4. Cycloidal Motion (Best Motion):

$$y = \frac{h}{\pi} \left(\frac{\pi \theta}{\varphi_a} - \frac{1}{2} \sin \left(\frac{2\pi \theta}{\varphi_a} \right) \right)$$

$$V = \frac{h\omega}{\varphi_a} \bigg(1 - \cos \bigg(\frac{2\pi \varphi}{\varphi_a} \bigg) \bigg)$$

$$V_{(max)_{cycloidal}} > V_{SHM} > V_{v=constant}$$

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

Visit us www.iitiansgateclasses.com