

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

Analog Communication - 1

Q1. Percentage modu frequency and 2kW in	lation of an Al	M wave having the band is	he power co	ntent of 8kW	at its carrier
(A)60%	(B)70%	(C)100	% (D)8	0%	(ISRO-2009)
Q2. A1kW carrier is carrier is	amplitude moo	lulated to a dept	h of 60%. Tł	ne total powe	er of modulated
(A)1kW	(B)1.06kW	(C)1.6kW	(D)1.18kW.		(ISRO-2009)
Q3.A audio frequency resulting bandwidth is (A)180kHz	y of 15kHz is f s (B)15	requency modul	ated with fre	equency devi 240kHz	ation of 75kHz. The (ISRO-2009)
Q4. Total power of ar modulation index is	nplitude modu	lated signal is 60	00W and car	rier power is	400W, the
(A)0.75	(B)0.5	(C)0.25	j	(D)1	(ISRO-2010)
Q5. A angle modulate $s(t) = 10 \cos (\omega_c + 5si$ (A)12387.32Hz	ed signal with $a_{n(3000\pi t)} + 10^{10}$ (B)17500Hz	carrier frequency Dsin(2000πt)). Fr (C)2000	$\sigma \omega_c = 2\pi \times 1$ requency dev 00Hz (D)1	10^5 is describination Δf is 5000Hz	ed by the equation (ISRO-2010)
Q6. The Maximum tr	ansmission pov	wer efficiency of	f the DSB wi	ith carrier A	mplitude modulation
is: (A)25% (C)50%	7	(B)33%) 0/		(1800 2011)
		(1)100	70		(ISKO-2011)

Q7.In this circuit V_{out} is (A)Upper sideband $(\omega_L + \omega_m)$ (B)Lower sideband $(\omega_L - \omega_m)$ (C) Both upper and lower sideband $(\omega_L \pm \omega_m)$ (D)None of the above

Copyright @IITians GATE CLASSES

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

Q8. For frequency modulated signal represented by $s(t) = 10sin(6 \times 10^8 t + 2sin100\pi t)$. The maximum frequency deviation in the carrier from its unmodulated frequency is

(A)990Hz	(B)100Hz	
(C)50Hz	(D)200Hz	(ISRO-2013)\

Q9. Which of the following modulation scheme is most bandwidth efficient?

(A)AM	(B)FM	
(C)PM	(D)SSB-SC	(ISRO-2014)\

Q10. Consider the system with x(t) as input and y(t) as output. The frequency domain characteristics are shown in the figure. Which combination of A and B will give y as result

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center

Q11. A DSB-SC signal is generated using the carrier $\cos (\omega e t + \theta)$ and modulating signal x(t). The envelope of the DSB-SC signal is

Copyright @IITians GATE CLASSES

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center

(C) only positive portion of x(t)

(A) x(t)

(B) |x(t)|

(D) $x(t)\cos\theta$

(GATE-EC-1996)

Q12. A modulated signal is given by $s(t) = e^{-at} \cos \left[(\omega_c + \Delta \omega) t \right] u(t)$ where ωc and $\Delta \omega$ are positive constants, and $\omega c \gg \Delta \omega$. The complex envelope of s(t) is given by (A) $\exp(-at) \exp[(\omega_c + \Delta \omega) t] u(t)$ (B) $\exp(-at)\exp(j\Delta\omega t)u(t)$ (C) $\exp(j \Delta \omega t)u(t)$ (GATE-EC-1998) (D) $\exp[j \omega_c + \Delta \omega] t$]

Q13. In an FM system, a carrier of 100 MHz is modulated by a sinusoidal signal of 5 KHz. The bandwidth by Carson's approximation is 1 MHz. If y(t) = (modulated)waveform)³, than by using Carson's approximation, the bandwidth of y(t) around 300 MHz and the and the spacing of spectral components are, respectively.

(A) 3 MHz, 5 KHz	(B) 1 MHz, 15 KHz	
(C) 3 MHz, 15 KHz	(D) 1 MHz, 5 KHz	(GATE-EC-2000)

Q14. The Hilbert transform of $\cos \omega_1 t + \sin \omega_2 t$ is		
(A) $\sin \omega_1 t - \cos \omega_2 t$	(B) $\sin\omega_1 t + \cos\omega_2 t$	
(C) $\cos \omega_1 t - \sin \omega_2 t$	(D) $\sin\omega_1 t + \sin\omega_2 t$	

(GATE-EC-2000)

Q15. A message m(t) bandlimited to the frequency fm has a power of Pm. The power of the output signal in the figure is

Q16. The amplitude modulated waveform $s(t) = Ac \left[1 + K_a m(t)\right] \cos wc t$ is fed to an ideal envelope detector. The maximum magnitude of $K_a m(t)$ is greater than 1. Which of the following could be the detector output ? (B) $A_c^2 [1 + Kam(t)]^2$ (A) Acm(t)(D) $Ac [1 + Kam(t)]^2$ (C) [Ac (1 + Kam(t))](GATE-EC-2000)

Copyright @IITians GATE CLASSES