

GATE-AE AIRCRAFT STRUCTURES

Table Of Content

Unsymmetrical Bending	01
Thin Walled-shear Flow	02
Thin-walled Torsion	03

OUR ACHIEVERS

GATE-2022 AE

SUBHROJYOTI BISWAS IIEST, SHIBPUR AIR - 4

SANJAY. S AMRITA UNIV, COIMBATORE AIR - 7

AKILESH . G HITS, CHENNAI AIR - 7

D. MANOJ KUMAR
AMRITA UNIV, COIMBATORE
AIR - 10

DIPAYAN PARBAT IIEST, SHIBPUR AIR - 14

And Many More

GATE-2021 AE

NILADRI PAHARI IIEST, SHIBPUR AIR - 1

VISHAL .M MIT, CHENNAI AIR - 2

SHREYAN .C IIEST, SHIBPUR AIR - 3

VEDANT GUPTA RTU, KOTA AIR - 5

SNEHASIS .C IIEST, SHIBPUR AIR - 8

And Many More

OUR PSU JOB ACHIEVERS

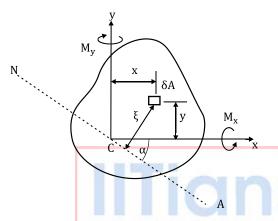
FATHIMA J (MIT, CHENNAI) HAL DT ENGINEER 2022

SADSIVUNI TARUN (SASTRA TANJORE) HAL DT ENGINEER 2021

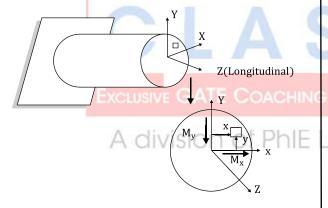
MOHAN KUMAR .H (MVJCE, BANGALORE) HAL DT ENGINEER 2022

VIGNESHA .M (MIT, CHENNAI) MRS E-II CRL BEL

ARATHY ANILKUMAR NAIR
(AMRITA UNIV, COIMBATORE)
HAL DT ENGINEER 2021



RAM GOPAL SONI (GVIET, PUNJAB) CEMILAC LAB, DRDO


AIRCRAFT / THIN-WALLED STRUCTURES

UNSYMMETRICAL BENDING

For an unsymmetrical cross section under complex bending

Sign Convention

To produce to same effect or same kind of stress (compressive or tension), moment need to follow each other.

Moments in Inclined Plane

- The moment in YZ plane is always about X- axis.
- The moment in XZ plane is always about Y- axis.

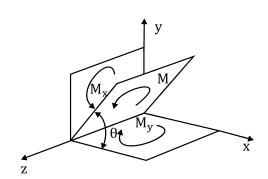
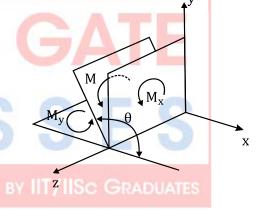
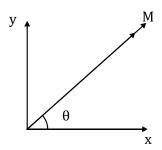



fig (a)

earning Cenie


Resolution of bending moments sign depending on the size of $\theta.$ In both cases, for the sense of M shown

- $M_x = M \sin \theta$
- $M_y = M\cos\theta$ This gives,
- For $\theta < \frac{\pi}{2}$, M_x and M_y positive (fig (a)) and for $\theta > \frac{\pi}{2}$, M_x positive and M_y negative (fig (b)).

Moments About Inclined Axis

Resolving Bending Moment along x and y axis

- $M_x = M\cos\theta$
- $M_v = -M\sin\theta$
- For all values of θ

Direct stress due to Unsymmetrical **Bending:**

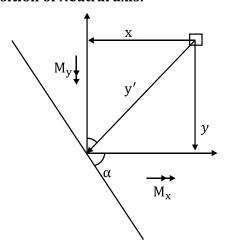
$$\sigma_{z} = \left(\frac{I_{xx}M_{y} - I_{xy}M_{x}}{I_{xx}I_{yy} - I_{xy}^{2}}\right)x + \left(\frac{I_{yy}M_{x} - I_{xy}M_{y}}{I_{xx}I_{yy} - I_{xy}^{2}}\right)y$$

$$\sigma_{z} = k_{1}x + k_{2}y$$

here

$$k_1 = \frac{(I_{xx}M_y - I_{xy}M_x)}{(I_{xx}I_{yy} - I_{xy}^2)}$$

$$COACHI$$


$$k_2 = \frac{(I_{yy}M_x - I_{xy}M_y)}{(I_{xx}I_{yy} - I_{xy}^2)}$$

For Symmetric C/S

$$I_{xy} = 0$$

$$\sigma_z = \frac{M_{xy}}{I_{yy}} x + \frac{M_x}{I_{xx}} y$$

Position of Neutral axis:

At neutral axis

$$\sigma_z = k_1 x + k_2 y = 0$$

$$\Rightarrow k_1 x_{NA} + k_2 y_{NA} = 0$$

$$\Rightarrow \frac{-y_{NA}}{x_{NA}} = \tan \alpha = \frac{k_1}{k_2}$$

Where α is inclination of neutral axis α is measure in x-axis in clockwise direction

THIN WALLED-SHEAR FLOW

For thin-walled Open Section

Change of shear flow along section

$$k_{2} = \frac{(I_{yy}M_{x} - I_{xy}M_{y})}{(I_{xx}I_{yy} - I_{xy}^{2})}$$
Change of shear flow along section
$$\frac{\partial q}{\partial s} = -t \left[\frac{I_{xx}\frac{\partial M_{y}}{\partial z} - I_{xy}\frac{\partial M_{x}}{\partial z}}{I_{xx}I_{yy} - I_{xy}^{2}} \right] x$$

$$-t \left[\frac{I_{yy} \frac{\partial M_{x}}{\partial z} - I_{xy} \frac{\partial M_{y}}{\partial z}}{I_{xx} I_{yy} - I_{xy}^{2}} \right] y$$

$$V_x = \frac{\partial M_y}{\partial z}$$
 and $V_y = \frac{\partial M_x}{\partial z}$

$$\frac{\partial q}{\partial s} = -t \frac{\left(I_{xx}V_x - I_{xy}V_y\right)}{\left(I_{xx}I_{yy} - I_{xy}^2\right)} x$$

$$-t\frac{\left(I_{yy}V_y-I_{xy}V_x\right)}{\left(I_{xx}I_{yy}-I_{xy}^2\right)}y$$

$$q_{s2} - q_{s1} = \int_{s_1}^{s_2} \frac{\partial q}{\partial s} ds$$

Note: For thin-walled section at the free end (open end) shear flow is considered as zero (Boundary condition)

For thin walled idealized (boom) section

$$\begin{aligned} q_{s} &= -\frac{\left(I_{xx}V_{n} - I_{xy}V_{y}\right)}{\left(I_{xx}I_{yy} - I_{xy}^{2}\right)} \Sigma Ax \\ &- \frac{\left(I_{xx}V_{y} - I_{xy}V_{y}\right)}{\left(I_{xx} - I_{yy} - I_{xy}^{2}\right)} \Sigma Ay \end{aligned}$$

For Closed Section

$$q = q_s + q_{s,0}$$

Shear Centre

- Shear centre is a point, if transverse loading is applied through this point, and then there will be no twist of the section. It will be only undergoing bending.
- It is also the point of twist or centre of the twist or centre of flexure.
- Shear centre is cross section property and it is independence of loading.
- For any section, if there is a junction, the junction itself will be a shear centre.

- For doubly symmetric section, shear centre and centroid is same.
- For single symmetric section, shear centre lies on axis of symmetry.

THIN-WALLED TORSION

Solid shaft

 $\tau \propto r$ (radial distance)

 $\theta \propto l$ (Longitudnal length)

Torsional Formula

$$\frac{\tau}{r} = \frac{T}{J} = \frac{G\theta}{L} \hspace{0.5cm} \tau_{solid\; shaft} = \frac{16T}{\pi d^3} \label{eq:tau_sol}$$

Thin-Walled single cell closed section:

$$q = \tau t$$

Bredth -Batho Theory:

$$T = 2Aq$$

$$\tau = \frac{q}{t} = \frac{T}{2At}$$

Angle of twist per unit length:

$$\frac{d\theta}{dx} = \frac{T}{4A^2G} \oint \frac{ds}{dt} = \frac{q}{2AG} \oint \frac{ds}{t}$$

$$T = GJ \frac{d\theta}{dx}$$
 SC GRADUATES

earning Center Torsional Constant:

$$J = \frac{4A^2}{\int \frac{ds}{t}}$$

Torsional Rigidity

$$GJ = \frac{4A^2}{\int \frac{ds}{Gt}} \rightarrow torstonal \ Rigidity$$

$$J = I_P \rightarrow for \ circular \ crossection$$

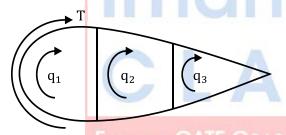
Thin-Walled single cell Open section:

Torsional formula

$$\frac{\tau}{t} = \frac{T}{J} = \frac{G\theta}{L}$$

Torsion constant
$$J = \sum \frac{bt^3}{3}$$
 or $\int \frac{t^3 ds}{3}$

Max shear stress


$$\tau_{max} = \frac{T}{J}t$$

Here t is thickness

Angle of twist per unit length

$$\frac{\theta}{L} = \frac{T}{GJ}$$

Thin-Walled multi cell closed section

Bredt Batho Equation

$$T = 2A_1q_1 + 2A_2q_2 + 2A_3q_3 \qquad \dots (1)$$

Compatibility equation

$$\theta'_1 = \theta'_2 = \theta'_3$$
(2)

Note: - For multi shell there is less twist than single shell.

GATE S S E S

BY III / IIDC GRADUATES

o⁽¹⁾PhIE Learning Center

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

Announcing

New Batches For

GATE 2024/25

Live Online Classes

AE | ME | CE | EC | EE | IN | CSE

Batch Starting From 19th Feb 2023

Hurry up! **Limited Seats Available**

