

GATE -ME REFRIGERATION & AIR-CONDITIONING

Table Of Content

Basic Concepts	01
Vapour Compression Refrigeration System (VCRS)	
Refrigerants	
Vapour Absorption Refrigeration System (VARS)	
Reverse Brayton/Bell Coleman Cycle	
Air Conditioning	

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

REFRIGERATION & AIR-CONDITIONING

Chapter 1: BASIC CONCEPTS

$$(COP)_{Heat\ pump} = \frac{Q_H}{Q_H - Q_L} = \frac{T_H}{T_H - T_L}$$

$$(COP)_{Ref} = \frac{Q_L}{Q_H - Q_L} = \frac{T_L}{T_H - T_L}$$

$$(COP)_{HP} = (COP)_{Ref} + 1 = \frac{1}{\eta_{engine}}$$

(When working between same temperature limits)

COP = Coefficient of Performance

$$W_{compressor} = h_2 - h_1$$

Unit of Refrigeration:

1TR: Amount of heat needed to extract from 1000 kg of water at 0°C, to convert it to 1000 kg ice at 0°C in a day (24 hrs). EXCLUSIVE GATE COACHING

Modifications in VCRS:

1. ↓ in Evaporator pressure

DV IIT /IISO COADLIATES

Chapter 2: VAPOUR COMPRESSION REFRIGERATION SYSTEM (VCRS)

(COP) =
$$\frac{RE}{W_{input}} = \frac{h_1 - h_4}{h_2 - h_1}$$

Refrigeration effect = RE
=
$$h_1 - h_4(kJ/kg)$$

RE \downarrow $W_{input} \uparrow$ $\eta_{vol} \downarrow$ COP \downarrow

2. Subcooling:

A division of PhIE Learnin

RE ↑

 $W_{input} \rightarrow Same$

 $\eta_{vol} \rightarrow same$

COP ↑

3. Superheating of Vapour in Evaporator

RE ↑

W_{input} ↑

COP (may ↓ or ↑)

 $\eta_{\rm vol} \rightarrow {\rm Same}$

Wet vs Dry Compression:

Disadvantages of wet over dry

compression

- 1. RE↓
- 2. Refrigerants may wash away the lubricants.
- 3. Wear and tear
- 4. Damage compressor valve and body.

Use of Flash Chamber:

 $COP \rightarrow No change$

Evaporator size ↓

Use of Heat Exchanger:

Implies both subcooling and superheating.

Purpose \Rightarrow to \downarrow size of evaporator

$$h_2 - h_1 = h_5 - h_6$$

 $C_{pv}(T_2 - T_1) = C_{pL}(T_5 - T_6)$

Cascade Refrigeration System:

$$(COP)_{CC} = \frac{(COP)_1 \times (COP)_2}{1 + (COP)_1 + (COP)_2}$$
 $(COP)_{CC} = \frac{Q_1}{W_1 + W_2}$

Volumetric Efficiency:

$$\eta_{vol} = \frac{Actual\ volume}{Theoretical\ swept\ volume}$$

$$\eta_{\text{vol}} = \frac{\dot{m}v_{\text{entry}}}{\frac{\pi}{4} d^2 \ell \times \frac{N}{60} \times K}$$

$$n_{\text{vol}} = 1 + C - C \left(\frac{p_{\text{H}}}{p_{\text{L}}}\right)^{\frac{1}{n}}$$

Where N = rpm

K = No. of cylinder

 $v_{\rm entry} = {
m Specific}$ volume at enry of compressor

$$C = \frac{v_c}{v_S}$$

n = Polytropic index

Chapter 3: REFRIGERANTS

Refrigerants:

Working substance which is used to extract heat from storage space.

1. Primary Refrigerant:

Used directly to absorb heat from storage space by changing their phase (L \rightarrow V) in evaporator. **Eg:** R-11, R-12, R-22, R-134a

2. Secondary Refrigerant:

Absorbs heat from the storage space and further transfer the same to primary refrigerants.

Eg: H₂O, Brine

A division of PhIE

Designation of Refrigerants:

a. Saturated Hydrocarbon

$$C_mH_nF_pClq$$

Then
$$n+p+q=2m+2$$

 $R(m-1)(n+1)p \rightarrow Designation.$

Eg: R-011, R11, R-012, R-134a

b. Unsaturated Hydrocarbons:

$$C_m H_n F_p Clq$$

$$n + p + q = 2m$$

R 1 (m-1)(n+1)p

Eg: R1150 (C₂H₄)

c. Inorganic Refrigerant:

Designation: R700 + Molecular weight. **Eg:** $NH_3 \rightarrow R717$

Ozone Depletion:

- Ozone layer is in stratosphere.
- Protects against UV radiation of sun.
- Cl atoms in CFC causes ozone depletion.
- R-134a (C₂H₂F₄) is eco-friendly refrigerant.

Chapter 4: VAPOUR ABSORPTION REFRIGERATION SYSTEM (VARS)

- Compressor is replaced by
 - a. Absorber
 - b. Pump
 - c. Generator
- Heat rejected by refrigerant in absorber and condenser.
- Solar absorption refrigeration system is working on VARS.
- $(COP)_{VARS} = 0.3 \text{ to } 0.5 \text{ (Generally)}$
- NH₃ H₂O(ref system)

GATE-ME-QUICK REVISION FORMULA SHEET

NH₃ used as refrigerant, H₂O used as absorber.

 $LiBr - H_2O$ H₂O used as refrigerant. LiBr used as absorber.

 $((COP)_{VARS})_{max}$

$$= \Big(1 - \frac{T_o}{T_G}\Big) \Big(\frac{T_E}{T_o - T_E}\Big)$$

⇒ Neglected pumpwork

$$(COP)_{actual} = \frac{Q_E}{W_P + Q_G}$$

Electrolux Refrigeration System:

(3 fluid system)

- 1. NH₃ used as refrigerant.
- 2. H₂O used as absorber.
- 3. H_2 used to reduce partial pressure of NH₃ Vapour.

Chapter 5: REVERSE BRAYTON/BELL COLEMAN CYCLE

$$\begin{array}{c}
p \\
3 \\
4
\end{array}$$

$$\begin{array}{c}
2 \\
pv^{\gamma} = Const
\end{array}$$

$$r_p = \text{pressure ratio} = \frac{p_H}{p_L}$$

$$(COP)_{RBC} = \frac{1}{\frac{T_2}{T_1} - 1} = \frac{1}{(r_p)^{\frac{\gamma - 1}{\gamma}} - 1}$$

This is used when expansion and compression are isentropic.

$$(COP)_{actual} = \frac{RE}{W_{Comp} - W_{Expander}}$$

$$\left(\eta_{isentropic}\right)_{Comp} = \frac{T_2 - T_1}{T_2' - T_1}$$

 $\left(\eta_{isentropic}\right)_{Turbine\ or\ Expander}$

$$=\frac{T_3-T_4'}{T_3-T_4}$$

$$HRR = \frac{Q_{Condenser}}{RE}$$

HRR = Heat rejection ratio

RE = Refrigeration effect (process 4-1)

$$(COP)_{Ref} = \frac{1}{HRR - 1}$$

Chapter 6: AIR CONDITIONING

Specific Humidity/Humidity Ratio(w)

$$w = \frac{0.622 \; p_v}{p_T - p_v}$$

Relative humidity (
$$\varphi$$
) = $\frac{m_v}{m_{vs}}$ = P_v/p_{vs}

Wet Bulb Depression (WBD):

$$WBD = DBT - WBT$$

Note:

For saturated air:

$$DBT = WBT = DPT$$

$$\phi = 1 \text{ or } 100\%, \qquad p_v = p_{vs}$$

$$\Rightarrow$$
 WBD = 0

DBT= dry bulb temperature

DPT = dew point temperature

WBT= wet bulb temperature

Enthalpy of moist Air (h):

$$h = 1.005t + w(2500 + 1.88t)$$

where
$$t = DBT(in °C)$$

$$w = kg/kg$$
 of dry air

Various line on Psychrometric Chart:

a. Constant DBT Lines:

- · Uniformly spaced
- Increases in + x direction

b. Constant

Specific

Humidity

(w)Line:

VERY IMPORTANT

Temp	Temp Notation	Corresponding saturation pressure
DBT	t	p _{vs}
WBT	t'	p_{v}^{\prime}
DPT	DPT	p_{v}

Uniformly spaced

• increases in + y direction

Apjohn Formula (used when WBT is given in the equation):

$$p_v = p_v' - \frac{1.8p(t-t')}{2700}$$

d. Constant DPT Lines

Constant φ Line

Degree of Saturation (μ):

$$\mu = \frac{w}{w_s}$$

$$\mu = \phi \left(\frac{p - p_{vs}}{p - p_{v}} \right)$$

• Non-uniformly spaced

Constant h: Uniformly spaced WBT_{line}: Non-uniformly spaced Same degree of inclination.

Various Psychrometric Processes:

SH (Sensible Heating):

Effects:

- 1. Temperature increases
- 2. w = constant
- 3. DPT =constant
- 4. φ decreases
- 5. h increases
- 6. WBT increases v (Specific volume)

$$Q_{s} = m_{a}(h_{1} - h_{2})$$

$$Q_{s} = m_{a}C_{pa}(t_{1} - t_{2})$$

$$+ m_{v}C_{pv}(t_{1} - t_{2})$$

$$Q_s = m_a (1.005 + 1.88w)(t_1 - t_2)$$

0r

$$Q_s = 0.0204 (C_{mm})\Delta t \text{ kW}$$

 C_{mm} =Volume flow rate of air in m^3/min

Humidification (HU):

Effects:

- 1. t = constant
- 2. φ increases
- 3. w increases

(h, WBT, v) increases

SION Of Phile Leaf 4. DPT increases

$$\begin{aligned} Q_{L} &= m_{a}(h_{2} - h_{1}) \\ &= m_{a} \left(\left(C_{p} t_{2} + h_{fg} w_{2} \right) \right. \\ &\left. - \left(C_{p} t_{1} + h_{fg} w_{1} \right) \right) \end{aligned}$$

$$= m_a h_{fg}(w_2 - w_1)$$

 h_{fg} = Latent heat of vaporization

or

$$Q_L = 50 C_{mm}(\Delta w) kW$$

- In desert cooler, cooling and humidification occurs or adiabatic saturation process occurs (i.e., chemical humidification upto saturation curve)
- Chemical humidification and dehumidification are along constant enthalpy lines.

 $w_1 m_{a_1} + w_2 m_{a_2} = w_3 (m_{a_1} + m_{a_2})$ $\frac{m_{a_1}}{m_{a_2}} = \frac{h_3 - h_2}{h_1 - h_3} \approx \frac{t_3 - t_2}{t_1 - t_3}$ (If only dry air is considered.)

Sensible Heat Factor(SHF):

$$SHF = \frac{SH}{SH + LH}$$

By Pass Factor (X):

By pass factor of 'n' coils in series = X^n

Adiabatic Mixing of Air Streams:

Mass Equation:

- For dry air $m_{a_1} + m_{a_2} = m_{a_3}$... eqn 1
- For water Vapour $m_{v_1} + m_{v_2} = m_{v_3} \dots eqn 2$

Energy Equation:

$$m_{a_1}h_1 + m_{a_2}h_2 = (ma_1 + m_{a_2})h_3$$

From equation 2

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

Visit us www.iitiansgateclasses.com