

Table Of Content

Conduction	01
Fins	04
Heat Exchanger	06
Radiation	08
Convection	12

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

HEAT TRANSFER

Chapter 1: CONDUCTION

Conduction depends on the medium.

Conduction can happen in solids, liquids and gases.

Solid:

In solid conduction happens due to

- 1. Free electron
- 2. Lattice Crystal vibration

Liquid:

In Liquid Conduction happens due to elastic collision.

Gases:

In gases conduction happens due to molecular momentum transfer during elastic collision.

Fourier Law of Heat Conduction:

Heat flux directly proportional to temperature gradient.

$$\dot{q} = -k \left(\frac{\partial T}{\partial x} \right) = \frac{\dot{Q}}{A}$$

Where A = Area normal to heat flow.

k = Thermal conductivity of material.

$$k_{gas} < k_{liquid} < k_{solid}$$

Knon metallic Crystal (diamond)

$$> k_{pure \, metal} > k_{alloys}$$

3D Generalized Conduction Equation:

$$\begin{split} \frac{\partial}{\partial x} \Big(k_x \frac{\partial T}{\partial x} \Big) + \frac{\partial}{\partial y} \Big(k_y \frac{\partial T}{\partial y} \Big) + \frac{\partial}{\partial z} \Big(k_z \frac{\partial T}{\partial z} \Big) \\ + \dot{Q}_g &= \rho C \frac{\partial T}{\partial t} \end{split}$$

Cylindrical Coordinate:

$$\begin{split} \frac{1}{r}\frac{\partial}{\partial r} \left(r\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{Q}_g}{k} \\ &= \frac{1}{\alpha}\frac{\partial T}{\partial t} \end{split}$$

where $\alpha = Thermal diffusivity$

$$= \frac{k}{\rho C_p} (m^2/\text{sec})$$

Spherical Coordinate:

 θ = zenith angle

 $\phi = Azimuthal Angle$

$$\begin{split} &\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) \\ &+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial T}{\partial \theta}\right) \\ &+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 T}{\partial \phi^2} + \frac{\dot{Q}_g}{k} = \frac{1}{\alpha}\frac{\partial T}{\partial t} \end{split}$$

 $\nabla^2 T = 0 \rightarrow \text{Laplace equation}$

$$\nabla^2 T + \frac{\dot{Q}_g}{k} = 0 \rightarrow \text{Poission equation}$$

$$\nabla^2 T = \frac{1}{\alpha} \frac{\partial T}{\partial t} \rightarrow \text{Diffusion equation}$$

$$\dot{Q}_g = \frac{\text{total internal heat}}{\text{yolume}}$$

$$\frac{\partial^2 T}{\partial x^2} = 0 \rightarrow \text{Fourier equation}$$

1D Steady State Conduction Heat

Transfer:

Where
$$k_m = k_o \left(1 \pm \beta \left(\frac{T_1 + T_2}{2} \right) \right)$$

Q

$$= k_o A \left(1 \pm \beta \left(\frac{T_1 + T_2}{2}\right)\right) \left(\frac{T_1 - T_2}{L}\right)$$

Heat Generation in Slab: A division of PhiE

Symmetric

$$\begin{split} &\frac{\partial^2 T}{\partial x^2} + \frac{\dot{Q}_g}{k} = 0 \\ &T - T_w = \frac{\dot{Q}_g L^2}{2k} \left(1 - \left(\frac{x}{L}\right)^2\right) \end{split}$$

(Parabolic)

Asymmetric

$$T_{max}-T_{w}=\frac{\dot{Q}_{g}L^{2}}{2k}$$

$$Q_{x=L} = \begin{bmatrix} \frac{1}{2} \ \dot{Q}_{Total} \end{bmatrix}$$

$$T - T_{w_1} = \frac{\dot{Q}_g}{2k} (L_1^2) \left(1 - \left(\frac{x}{L_1} \right)^2 \right)$$

$$T - T_{w_2} = \frac{\dot{Q}_g}{2k} L_2^2 \left(1 - \left(\frac{x}{L_2} \right)^2 \right)$$

Case 2: Special Case

 T_w =Wall Temperature.

$$T_{\text{max}} = T_{\text{w}} + \frac{\dot{Q}_{\text{g}}L^2}{2k}$$
s 1.

$$\begin{split} &at\frac{s}{f}, x = L, \frac{1}{2}\dot{Q}_g(A_c \times 2L) = hA_s(T_w - T_\infty) \\ &T_w = T_\infty + \frac{\dot{Q}_gL}{\overline{h}} \end{split}$$

$$T_{max} = T_{\infty} + \frac{\dot{Q}_{g}L}{\bar{h}} + \frac{\dot{Q}_{g}L^{2}}{2k}$$

 $T_{max} = Temp$ at centre of wall

 \overline{h} = Convective heat transfer coefficient

Case 3:

When one side is insulted

Then

$$Q_{convection} = 0$$

$$q_{conduction} = 0 \Rightarrow \left(\frac{dT}{dx}\right)_{side} = 0$$

 $T = T_{max}$ at insulated surface

Heat Conduction in Hollow Cylinder:

$$Q_{radial} = \frac{2\pi kL(T_1 - T_2)}{\ln(r_2/r_1)}$$

$$Q_{radial}$$

Replace k with k_m when variable k is

given.

Newton's Law of Cooling:

$$Q = hA (T_w - T_\infty)$$

In General

$$Q = \frac{\Delta T}{\sum R_{th}}$$

R = Resistance

Stefan Boltzman Law of Radiation:

$$E_b \propto T^4$$

$$E_b = \sigma T^4$$

 σ = Stefan Boltzman constant

$$= 5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$$

(R) Resistance	Slab	Cylinder	Sphere
Conduction	L kA	$\frac{\ln\left(\frac{r_2}{r_1}\right)}{2\pi kL}$	$\frac{\mathbf{r}_2 - \mathbf{r}_1}{4\pi \mathbf{k} \mathbf{r}_1 \mathbf{r}_2}$
Convection	$\frac{1}{hA}$	$\frac{1}{hA}$	$\frac{1}{hA}$

Overall Heat Transfer Coefficient (U)

$$\begin{split} &\frac{1}{U} = \sum R_{th} \cdot A \\ &\frac{1}{U_i} = \sum Rth \times A_i \\ &\frac{1}{U_o} = \sum R_{th} \times A_o \end{split}$$

Heat Generation in Cylinder

$$T - T_w = \frac{\dot{Q}_g}{4k} R^2 \left(1 - \frac{r}{R}\right)^2$$

$$T_{\text{max}} - T_{\text{w}} = \frac{\dot{Q}_g}{4k} R^2 \rightarrow \text{equation } 1$$

Special Case:

$$\dot{Q}_g \times volume = \bar{h}A_s(T_w - T_\infty)$$

$$\dot{Q}_{g} \times \pi R^{2} L = \overline{h} (2\pi R L) (T_{w} - T_{\infty})$$

$$T_{\rm w} = \frac{\dot{Q}_{\rm g}}{2\overline{h}} \ R + T_{\infty}$$

From equation 1

$$T_{max} = T_{\infty} + \frac{\dot{Q}_g R}{2 \overline{h}} + \frac{\dot{Q}_g R^2}{4 k}$$

Heat Generation is Sphere:

$$T - T_w = \frac{\dot{Q}_g}{6k} R^2 \left(1 - \left(\frac{r}{R}\right)^2 \right)$$

Special Case:

$$\dot{Q}_g \times \frac{4}{3}\pi R^3 = \overline{h} \times 4\pi R^2 (T_w - T_\infty)$$

$$T_{w} = T_{\infty} + \frac{\dot{Q}_{g}R}{3\bar{h}}$$

$$T_{w} = T_{w} + \frac{\dot{Q}_{g}R}{2\bar{g}} + \frac{\dot{Q}_{g}R}{2\bar{g}}$$

$$T_{\text{max}} = T_{\infty} + \frac{\dot{Q}_{g}R}{3\bar{h}} + \frac{\dot{Q}_{g}R^{2}}{6 k_{\text{solid}}}$$

Critical Radius of insulation

Cylinder $r_c = \frac{k}{h}$

Sphere $r_c = \frac{2k}{h}$ XCLUSIVE GATE COACHII

k = Thermal conductivity of insultingmaterial.

Slab (No r_c)

Chapter 2: FINS

$$\theta = T - T_{\infty} = C_1 e^{-mx} + C_2 e^{-mx}$$

$$m = \sqrt{\frac{hP}{kA}}$$

P = Perimeter of fin

A = cross-section area

$$l_c = l + \frac{t}{2} \rightarrow Rectangular Fin$$

$$l_c = l + \frac{d}{4} \rightarrow Pin fin$$

Characteristics

$$\frac{\theta}{\theta_0} = \frac{T - T_{\infty}}{T_0 - T_{\infty}}$$

(q fin) at
$$x = 0$$

$$(q \text{ fin}) \text{ at } x = 0$$

$$\eta = \frac{q_{\text{actual}}}{q_{\text{max}}}$$

$$\epsilon = \frac{q_{\text{with fin}}}{q_{\text{without fin}}}$$

Infinite Long Fin

$$\sqrt{hPkA} \theta_b$$

$$\frac{1}{ml}$$

$$\sqrt{\frac{Pk}{hA}}$$

B.C

$$1. x = 0, \theta = \theta_b$$

$$2. x = \infty, \theta = 0$$

Fin: (Finite length and Insulated tip)

$$\frac{\cosh\left(m\left(l-x\right)\right)}{\cosh\left(ml\right)}$$

$$\sqrt{hPkA}(\theta_b) \tan h(ml)$$

tan hml

mL

$$\sqrt{\frac{Pk}{hA}} \times \tan h(ml)$$

1. At
$$x = 0$$
, $T = T_b$, $\theta = \theta_b$

2. At
$$x = L$$
, $-kA \left(\frac{\partial T}{\partial x}\right)_{x=L} = 0$

Fin: (Finite length and non Insulated tip)

$$\cos h \left(m \left(l_c - x \right) \right)$$

 $\sqrt{hPkA} (\theta_b) \tan h(ml_c)$

tan h (ml_c)

 (ml_c)

$$\sqrt{\frac{Pk}{hA}} = \tan h(ml_c)$$

If $m_L \le 2.65 \rightarrow Short Fin$

$$(\epsilon_{min})_{fin} \geq 2$$
 , $\epsilon = Effectiveness$

$$\varepsilon = \frac{\eta_{fin}A_s}{A_c}$$

$$A_s = P \times l$$

$$A_c = w \times t$$

Unsteady or Transient Conduction heat Transfer:

$$hA(T - T_{\infty}) = -mC_{p} \frac{dT}{dt}$$

⇒ to be used when rate of cooling is asked

$$\frac{T - T_{\infty}}{T_{i} - T_{\infty}} = e^{-\frac{hA_{s}\tau}{\rho vC_{p}}}$$

 $T_i = Initial Temperature$

 $\tau = time$

v = volume

$$\frac{\rho vC_p}{hA_s} = t^* \to \text{Time constant (TC)}$$

Note: Reading on thermocouple is taken at 3(TC).

Lumped Heat Analysis:

This is used when Bi < 0.1

$$\mbox{Biot No (Bi)} = \frac{\mbox{hL}_{c}}{\mbox{k}_{solid}} = \frac{\mbox{Internal conductive}}{\mbox{External convective}} \\ = \frac{\mbox{resistance}}{\mbox{external convective}} \\ = \frac{\mbox{external convective}}{\mbox{external convective}} \\ = \frac{\mbox{external convective}}$$

$$L_{c} = \frac{Volume}{Surface Area}$$

 k_{solid} = Thermal conductivity of object.

1. **Slab**:

A.

$$L_{c} = \frac{lbh}{2(\ell b + hb + \ell h)}$$

B.

$$L_{c} = \frac{At}{2A} = \frac{t}{2}$$

2. Cylinder

$$\bigoplus_{L} D$$

$$L_c = \frac{\pi R^2 L}{2\pi R L + 2\pi R^2}$$

$$L_c = \frac{R}{2}$$
; when L >> R

3. **Sphere**

4. Cube

$$\frac{V}{SA} = \frac{a}{6}$$

Heisler Chart:

 F_o = Fourier number

So Bi > 0.1 then

$$\frac{T - T_{\infty}}{T_{o} - T_{\infty}} = \begin{pmatrix} Grober \\ chart \\ solution \end{pmatrix} \times \begin{pmatrix} Heisler \\ chart \\ solution \end{pmatrix}$$

Grober Chart:

Chapter 3: HEAT EXCHANGERS

Parallel Flow Heat Exchanger

5. Hollow Cylinder: VISION Of Phile

$$L_{c} = \frac{R_2 - R_1}{2}$$

Semi-infinite solid (Bi $\rightarrow \infty$)

When Bi > 0.1, then Heisler charts must be used.

Counter Flow Heat Exchanger

 $T_{hi} = Hot fluid inlet temperature$

 T_{he} =Hot fluid exit temperature

 $T_{ci} = \text{Cold fluid inlet temperature}$

 T_{ce} =Cold fluid exit temperature

$$LMTD = \Delta T_{m} = \frac{\Delta T_{i} - \Delta T_{e}}{\ln \left(\frac{\Delta T_{i}}{\Delta T_{e}}\right)}$$

Note:

If $T_{ce} > T_{he}$

Then it is (CFHE)

Case 1:

If $Q = same (T_{hi}, T_{he}, T_{ci}, T_{ce} = same$ for both parallel flow and counter flow.

(LMTD)_{Counter flow}

$$(As)_{CF} < (As)_{PF}$$

As = Surface area of heat exchanger

Case 2:

 $As \rightarrow same$

 $Q_{PF} < Q_{CF}$

Case 3:

When one of the fluid is changing its

phase.

 $(LMTD)_{PF} = (LMTD)_{CF}$

Case 4:

When both hot and cold fluid have equal eat capacity $\left(\dot{m}_h C_{ph} = \dot{m}_c C_{pc}\right)$ $(LMTD)_{CF} = \Delta T_i \text{ or } \Delta T_e$

$$\frac{dT_h}{dx} = \frac{dT_c}{dx} = constant$$

(Balanced Count Flow Heat Exchanger)

Heat transferred \Rightarrow Q = UA(ΔT_m)

U = Overall heat transfer coefficient

$$\frac{1}{U} = \frac{1}{h_1} + F_1 + \frac{1}{h_2} + F_2$$

where F_1 and F_2 = Fouling factor

$$F = \frac{1}{U_{dirt}} - \frac{1}{U_{clean}}$$

$$\begin{split} \frac{1}{U_{i} A_{i}} &= \frac{1}{U_{o} A_{o}} = \frac{1}{h_{i} A_{i}} + \frac{R_{fi}}{A_{i}} \\ &+ \frac{\ln(r_{2}/r_{1})}{2\pi k L} + \frac{R_{f_{o}}}{A_{o}} \end{split}$$

BY IIT/IISC GRAL+ $\frac{1}{h_0 A_0}$

 $Q = U_i A_i LMTD$ or $U_o A_o LMTD$ $A = \pi dl \times n \times p \quad (p = No. of passes)$

n = No. of tubes / pass

 $\dot{m} = \rho \times \frac{\pi}{4} d^2 \times n \times velocity$

F ∝ Temperature

$$F \propto \frac{1}{\text{Velocity of flow}}$$

Effectiveness of Heat Exchanger (ϵ)

$$\epsilon = \frac{q_{actual}}{\dot{q}_{max \, possible}}$$

$$\dot{q}_{max} = (\dot{m}C_p)_{smaller} (\Delta T)_{max}$$

$$\Delta T_{\text{max}} = T_{h_i} - T_{c_i}$$

When $\dot{m}_h C_h < \dot{m}_c C_c$

$$\varepsilon = \frac{T_{hi} - T_{he}}{T_{hi} - T_{ci}}$$

When $\dot{m}_h C_h > \dot{m}_c C_c$

$$\varepsilon = \frac{T_{ce} \ - T_{ci}}{T_{hi} - T_{ci}}$$

Number of Transfer Units (NTU)

$$NTU = \frac{UA}{\left(\dot{m}C_{p}\right)_{smaller}}$$

Where U is in W/m²K

A in m²

m in kg/sec

C_p in J/kg K

Capacity ratio (C) =
$$\frac{\left(\dot{m}C_{p}\right)_{smaller}}{\left(\dot{m}C_{p}\right)_{larger}}$$

$$0 \le C \le 1$$

$$\epsilon = f(NTU, C)$$

$$\epsilon_{PF} = \frac{1 - e^{-NTU(1+C)}}{1+c}$$
 Parallel flow

$$\epsilon_{CF} = \frac{1 - e^{-NTU(1-C)}}{1 - ce^{-NTU(1-C)}}$$
 Counter flow

A division of PhIE

Case 1:

When
$$C = 0$$

$$\epsilon_{PF} = \epsilon_{CF} = \epsilon = 1 - e^{-NTU}$$

When LMTD = same

Area same

NTU same

Case 2:

$$\dot{m}_h C_h = \dot{m}_c C_c (C = 1)$$

$$\varepsilon_{PF} = \frac{1 - e^{-2NTU}}{2}$$

$$\varepsilon_{CF} = \frac{NTU}{1 + NTU}$$

Chapter 4: RADIATION

E = Total Hemispherical Emissive Power.

$$E = \int_0^\infty E_\lambda d\lambda = \frac{Watt}{m^2}$$

= Area under E_{λ} and $d\lambda$ graph

 $E_{\lambda} = Monochromatic/Spectral$

Hemispherical Emissive Power

$$E_{\lambda} \text{ is in } \frac{Watt}{m^2 - \mu m}$$

 ϵ = Total Emissivity

 $\epsilon_{\lambda} = \text{Monochromatic/Spectral Emissivity}$

 ϵ_{avg} calculation:

$$\epsilon = \frac{E}{E_b} = \frac{\int_0^\infty E_{\lambda} d\lambda}{\int_0^\infty E_{b\lambda} d\lambda} = \frac{\int_0^\infty (\epsilon_{\lambda} E_{b\lambda}) d\lambda}{\int_0^\infty E_{b\lambda} d\lambda}$$

Grey body = $\epsilon_{\lambda} \neq \text{fn}(\lambda)$

So for grey body $\in = \epsilon_{\lambda} = \text{constant}$

 $\alpha = Absorptivity \Rightarrow Fraction of Incident radiation absorbed.$

 $\rho = \text{Reflectivity} \Rightarrow \text{Fraction of}$ incident radiation reflected.

 $\tau = \text{Transmissivity} \Rightarrow \text{Fraction of}$ incident radiation transmitted.

$$\alpha + \tau + \rho = 1$$

For black body $\alpha_b = 1$, $\epsilon_b = 1$

Law of Radiation:

1. Kirchoff's Law:

Whenever a body is in thermal equilibrium with its surrounding then its emissivity is equal to absorptivity $\alpha = \epsilon$

2. Plank's Law:

This law states that monochromatic or spectral emissive power of black body dependent on both absolute temperature of black body and wave length of energy emitted from body.

$$E_{b,\lambda} = f(\lambda, T)$$

$$E_{b,\lambda} = \frac{2\pi C_1}{\lambda^5 \left(e^{\frac{C_2}{\lambda T}} - 1\right)} \frac{\text{Watt}}{\text{m}^2 \mu \text{m}}$$

By Increase in temperature, the wavelength of $\left(E_{b,\lambda}\right)_{max}$ shifted to left

3. Wien's Displacement Law:

$$\lambda_{\text{max}} \cdot T = 2898 \text{ (in } \mu\text{m K)}$$

4. Stefan-Boltzmann Law:

$$E_b \propto T^4$$

$$E_b = \sigma T^4 \ W/m^2$$
 Where $\sigma = 5.67 \times 10^{-8} \ W/m^2 K^4$

5. Lambert's Cosine Law:

 $i = i_n \cos \theta$

 $\theta = Angle with normal of plane$

$$i = \frac{Watt}{m^2 - steradian}$$

Solid angle(ω): Unit \rightarrow Steradian (Sr)

$$dw = \frac{(dA)_N}{r^2} = \sin \theta \ d\theta \ d\phi$$
$$dw = \frac{dA \cos \alpha}{r^2}$$

 α is direction normal to the surface and viewing point.

Sphere $\omega = 4\pi$, Hemisphere $(\omega) = 2\pi$

Intensity of Radiation:

$$\begin{split} I_{e(\theta,\varphi)} &= \frac{dQ_e}{dA\cos\theta d\omega} \ \frac{Watt}{m^2 \cdot Sr} \\ dE &= \frac{dQ_e}{A} = I_{e(\theta,\varphi)} \cdot \cos\theta \sin\theta \, d\theta \, d\varphi \end{split}$$

Hemispherical Power:

$$\begin{split} E &= \int dE \\ &= \int_{\Phi^{-0}}^{2\pi} \int_{\theta^{-0}}^{\theta = \frac{\pi}{2}} I_{e(\theta, \varphi)} \cos \theta \sin \theta \, d\theta d\varphi \, \left(\frac{Watt}{m^2} \right) \end{split}$$

Note:

For Diffuse body $I_{e(\theta,\varphi)}=constant$ (Independent of direction)

$$E_b = \pi i_n W/m^2$$

Shape Factor/Configuration/ View

Factor:

 F_{mn} = Fraction of radiation energy leaving surface (m) that reaches surface (n).

$$0 \le F_{mn} \le 1$$

Reciprocity Relation:

$$A_1F_{12} = A_2F_{21}$$

$$F_{12} = \frac{1}{\pi A_1} \int_{A_1} \int_{A_2} \frac{dA_1 dA_2 \cos \theta \cos \varphi}{r^2}$$

$$F_{21} = \frac{1}{\pi A_2} \, \iint \frac{dA_1 dA_2 \cos\theta \cos\varphi}{r^2} \label{eq:F21}$$

Special Cases:

$$F_{11} = 0$$

$$Convex S/F$$

$$A_2 >>> A_1$$

$$F_{12} = \frac{D^2}{D^2 + 4I^2}$$

$$F_{12} = F_{21} = 1 - \sin\left(\frac{\theta}{2}\right)$$

Summation Rule:

$$F_{11} + F_{12} + F_{13} + \dots + F_{1N} = 1$$

For N body Enclosure \rightarrow N² Total shape factor

Number of active shape factor

$$F_{13} = \frac{L_1 + L_3 - L_2}{2L_1}$$

$$w_1 = w_2 = w_3 = w = same (width)$$

Hottle's Cross String Method (For non-enclosure):

$$F_{12} = \frac{(L_3 + L_4) - (L_5 + L_6)}{2L_1}$$

Irradiation (G):

Total radiation energy incident on surface (W/m^2) .

$$J = \rho G + \in E_b$$

J = Radiosity: total radiation energy leaving the surface.

Surface Resistance =
$$\frac{1 - \epsilon}{A\epsilon}$$

Space Resistance =
$$\frac{1}{A_1 F_{12}}$$

General Radiation Equation

$$(q_{1-2})_{\text{net}} = \frac{E_{b_1} - E_{b_2}}{\sum R_{\text{th}}} = \frac{\sigma(T_1^4 - T_2^4)}{\sum R_{\text{th}}}$$

Calculation of Rth:

Case 1:

EXCLUSIVE GATE COACHIN

For 2 bodies

$$E_{b_1} \xrightarrow{1-\epsilon_1} \frac{1}{A_1\epsilon_1} \xrightarrow{1} \frac{1}{A_1F_{12}} \xrightarrow{1-\epsilon_2} E_{b_2}$$

$$Q_{1-2} = -Q_{2-1}$$
B. If S/F (3) reradiate

$$\sum R_{\rm th} = \frac{1-\varepsilon_1}{A_1\varepsilon_1} + \frac{1}{A_1F_{12}} + \frac{1-\varepsilon_2}{A_2\varepsilon_2}$$

Case 2:

For 3 Bodies

Special Case for Case 2:

A. If one S/F is reradiating S/F (Suppose (3))

$$Q_3 = 0$$

B. If S/F(3) reradiating & S/F(2) is large area.

$$A_2 \to \infty$$
So $\frac{1 - \epsilon_2}{A_2 \epsilon_2} \to 0$

GATE-ME-QUICK REVISION FORMULA SHEET

Radiation Shields:

$$\left(\frac{q}{A}\right)_{\rm with\; shield} = \frac{\sigma(T_1^4-T_2^4)}{\sum R_{th}} \ \ \, W/m^2$$

If n No. of shields used:

- 1. (2n + 2)Total surface resistance
- 2. (n + 1) Total space resistance

If
$$\epsilon_1 = \epsilon_2 \dots \epsilon_n = \epsilon$$

$$\left(\frac{q}{A}\right)$$
 with shield $=\left(\frac{1}{n+1}\right)\left(\frac{q}{A}\right)_{w/o \text{ shield}}$

Estimation of error in temperature measurement:

 $T_g = True gas temperature$

 $T_c = Reading on thermocouple$

 $T_w = Duct wall temperature$

 ϵ_c = Emissivity of thermocouple

$$hA\ \underbrace{\left(T_g-T_c\right)}_{error}=\sigma(T_c^4-T_w^4)\times A\times \varepsilon_c$$

$$Error = \varepsilon_c \sigma \left(\frac{T_c^4 - T_w^4}{h} \right)$$

Chapter 5: CONVECTION

Reylond Number (Re) =
$$\frac{\rho VD}{\mu}$$

= $\frac{Inertia\ force}{Viscous\ force}$

$$Nusselt number (Nu) = \frac{hD}{k_{fluid}}$$

Prandtl Number (Pr) =
$$\frac{\mu C_p}{k} = \frac{\nu}{\alpha}$$

v = Kinematic viscosity

Stanton Number (St) =
$$\frac{h}{\rho U_{\infty}C_{p}}$$

1. Forced convection (Flow over flat plate).

Laminar Flow:

Momentum Equation:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = v\frac{\partial^{2} u}{\partial y^{2}}$$

$$\tau_{w} = u\left(\frac{\partial u}{\partial y}\right)_{y=0}$$

$$\to \delta \alpha x^{\frac{1}{2}}$$

$$\tau_{w} \alpha x^{-\frac{1}{2}}$$

$$h_{x} \alpha x^{-\frac{1}{2}}$$

 $\delta_{\rm h} = \delta = \text{Boundary layer thickness}$

Energy equation:

$$\begin{aligned} u & \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \\ &= \alpha \frac{\partial^2 T}{\partial y^2} \\ &- k_f A \left(\frac{\partial T}{\partial y} \right) = h_x A \left(T_w - T_\infty \right) \\ h_x &= \frac{- k_f \left(\frac{\partial T}{\partial y} \right)_{y=0}}{T_{w} - T_w} \end{aligned}$$

For Flat Plate:

Laminar flow

A. Isothermal

$$\overline{\text{Nu}} = 0.664 \, (\text{Re})^{1/2} \, (\text{Pr})^{1/3}$$

B. Constant Heat Flux

$$Nu_x = 0.453 \text{ Re}_x^{\frac{1}{2}} (Pr)^{\frac{1}{3}}$$

$$\frac{\delta_h}{\delta_t} = \frac{(Pr)^{\frac{1}{3}}}{1.026}$$

 $\delta_h = Hydrodynamic boundary$ layer thickness

 $\delta_t = \mbox{ Thermal boundary layer}$ thickness

Turbulent Flow:

A. Isothermal Plate

 $(Nu_x)_{local} = 0.028 (Re)^{0.8} (Pr)^{\frac{1}{3}}$

When whole plate length has turbulent flow.

B.

 $\overline{\text{Nu}} = (0.037 \, (\text{Re})^{0.8} - 871) (\text{Pr})^{\frac{1}{3}}$

$$(St)_x * (Pr)^{\frac{2}{3}} = \frac{C_{f,x}}{2}$$

→ Reynolds Analogy

 $C_{f,x} = Local$ skin friction coefficient.

C. Constant Heat Flux:

$$\overline{Nu} = 1.04 \overline{Nu}_{T=C}$$

$$\frac{\delta_{\rm h}}{\delta_{\rm t}} = 1 \text{ (Approx)}$$

2. Forced Convection (Through Pipes and Ducts):

$$u_{mean} = \frac{2}{R^2} \int_0^R u r dr$$

 $u_{mean} = mean/Avg$ velocity

$$T_b = \frac{2}{u_m R^2} \int_0^R u \, T \, r \, dr$$

 T_b =Bulk mean temperature of fluid

Pipe/Duct Laminar (Re_d < 2300)

A. Constant temperature

$$\overline{N}u = 3.66$$

B. Constant heat flux

$$\overline{N}u = 4.364 \text{ or } \left(\frac{48}{11}\right)$$

Turbulent ($Re_d > 4000$)

$$\overline{N}u = 0.023 (Re)^{0.8} (Pr)^n$$

n = 0.4 For heating of fluid

n = 0.3 For cooling of fluid.

$$St * (Pr)^{2/3} = \frac{F}{8}$$

F = Friction factor

Constant Heat Flux:

 $h_x = constant$

$$\dot{m} \; C_p \; (T_e - T_i) = h A_s \Delta T_{const}$$

Constant Wall Temperature:

$$Q = hA_s (LMTD) = \dot{m} C_p (T_e - T_i)$$

$$LMTD = \frac{\Delta T_i - \Delta T_e}{\ln(\frac{\Delta T_i}{\Delta T_e})}$$

Free convection or natural

convection

 $Nu = C(GrPr)^m$

$$(GrPr < 10^9)$$

$$m = \frac{1}{3}$$
 for Turbulent flow

$$(GrPr > 10^9)$$

Gr = Grashoff number VE GATE COACHING BY HT/HSC GRADUATES

$$Gr = \frac{gB(\Delta T)L_c^3}{v^2}$$

$$\beta = \frac{1}{T_{mean}}$$

v = kinematic viscosity

T_{mean} is in Kelvin

 L_c = Characteristics dimension

$$\Delta T = T_{\rm w} - T_{\rm \infty}$$

$$\beta = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_{n}$$

Rayleigh Number (Ra) = (Gr. Pr):

1.

2.

3.

Vertical Plate

4.

 $Gr = \frac{gB(\Delta T)L_c^3}{v^2}$ A division of PhIE Learning Center

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

(4) +91-97405 01604

Visit us www.iitiansgateclasses.com