

Table Of Content

Aerodynamics Basics	05
Potential Fluid Flow	08
Incompressible Flow Over Airfoils	13
Thin Airfoil Theory	14
Incompressible Flow Over Wing	15

OUR ACHIEVERS

GATE-2023 AE

SRIRAM R
SSN COLLEGE CHENNAI
AIR - 2

Akriti PEC, Chandigarh AIR - 6

SHREYASHI SARKAR IIEST, SHIBPUR AIR - 8

YOKESH K MIT, CHENNAI AIR - 11

HRITHIK S PATIL RVCE, BANGALORE AIR - 14

And Many More

GATE-2022 AE

SUBHROJYOTI BISWAS IIEST, SHIBPUR AIR - 4

SANJAY. S AMRITA UNIV, COIMBATORE AIR - 7

AKILESH . G HITS, CHENNAI AIR - 7

D. MANOJ KUMAR AMRITA UNIV, COIMBATORE AIR - 10

DIPAYAN PARBAT IIEST, SHIBPUR AIR - 14

And Many More

GATE-2021 AE

NILADRI PAHARI IIEST, SHIBPUR AIR - 1

VISHAL .M MIT, CHENNAI AIR - 2

SHREYAN .C IIEST, SHIBPUR AIR - 3

VEDANT GUPTA RTU, KOTA AIR - 5

SNEHASIS .C IIEST, SHIBPUR AIR - 8

And Many More

OUR PSU JOB ACHIEVERS DRDO & ADA Scientist B

Job Position for Recruitment (2022-23) Based on GATE AE score

Mr. Abhilash K (Amrita Univ Coimbatore)

Ms. Ajitha Nishma V (IIST Trivendrum)

Mr. Dheeraj Sappa (IIEST Shibpur)

Ms. F Jahangir (MIT Chennai)

Mr. Goutham (KCG College Chennai)

Mr. M Kumar (MVJ College Bangalore)

Mr. Mohit Kudal (RTU Kota)

Mr. Niladhari Pahari (IIEST Shibpur)

Mr. Nitesh Singh (Sandip Univ Nashik)

Mr. Ramanathan A (Amrita Univ Coimbatore)

Ms. Shruti S Rajpara (IIEST Shibpur)

HAL DT ENGINEER

Job Position for Recruitment (2023)

Mr. Anantha Krishan A.G (Amrita Univ Coimbatore)

Mr. S.S Sanjay (Amrita Univ Coimbatore)

Mr. Shashi Kanth M (Sastra Univ Taniore)

Mr. Vagicharla Dinesh (Lovely Professional Univ Panjab)

FATHIMA J (MIT, CHENNAI) HAL DT ENGINEER 2022

SADSIVUNI TARUN (SASTRA TANJORE) HAL DT ENGINEER 2021

MOHAN KUMAR .H (MVJCE, BANGALORE) HAL DT ENGINEER 2022

VIGNESHA .M (MIT, CHENNAI) MRS E-II CRL BEL

ARATHY ANILKUMAR NAIR (AMRITA UNIV, COIMBATORE) HAL DT ENGINEER 2021

RAM GOPAL SONI (GVIET, PUNJAB) CEMILAC LAB, DRDO

AEROOYNAMICS

AERODYNAMICS BASICS

1. Linear Strains of Fluid Element

$$\dot{\epsilon}_{xx} = \frac{\partial u}{\partial x} \; \; ; \; \dot{\epsilon}_{yy} = \frac{\partial v}{\partial y} \; ; \quad \dot{\epsilon}_{zz} = \frac{\partial w}{\partial z}$$

where u, v and w are the velocity components in x, y and z directions respectively.

2. Rate of angular deformation:

$$\dot{\gamma}_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \qquad \quad \dot{\gamma}_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}$$

$$\dot{\gamma}_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}$$

$$\dot{\gamma}_{zx} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}$$

3. Vorticity

$$\xi = \nabla \times \overrightarrow{V}$$
;

IF $\nabla \times \overrightarrow{V} = 0 \rightarrow Irrotational flow$

4. Angular Velocity

$$\vec{\omega} = \frac{1}{2} \left[\vec{\nabla} \times \vec{\vec{V}} \right]$$

A division of PhIE

5. **Enstrophy**

$$(E) = |\xi|^2$$

$$(E) = \left| \nabla \times \overrightarrow{V} \right|^2$$

6. Continuity Equation for

Incompressible Flow:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \Rightarrow \, \dot{\epsilon}_{xx} + \dot{\epsilon}_{yy} + \dot{\epsilon}_{zz} = 0$$

i.e. No volumetric dilation rate per unit volume

7. Stream Function:

$$\overline{\Psi}(x,y) = c$$

For each 'c' value we get a streamline

$$\rho u = \frac{\partial \overline{\psi}}{\partial y}$$
; $\rho v = -\frac{\partial \overline{\psi}}{\partial x}$ And

$$\rho V_r = \frac{1}{r} \frac{\partial \overline{\psi}}{\partial \theta}; \quad \rho V_\theta = -\frac{\partial \psi}{\partial r}$$

For incompressible flow $\psi = \frac{\psi}{\Omega}$

$$\therefore \mathbf{u} = \frac{\partial \psi}{\partial \mathbf{v}} \; ; \; \mathbf{v} = \frac{-\partial \psi}{\partial \mathbf{x}}$$

- a. For compressible flow. $\Delta\overline{\psi}=\overline{\psi}_2-\overline{\psi}_1$ give the mass flow rate between the two streamlines ψ_1 and ψ_2
- b. For incompressible flow, $\Delta \psi$ represents volume flow rate per unit
- c. Stream function is valid for 2D flows

8. Velocity Potential Function:

 ϕ = Velocity potential function

So, the flow velocity is defined as

$$\vec{V} = \nabla \phi$$
 i.e., $u = \frac{\partial \phi}{\partial x}$; $v = \frac{\partial \phi}{\partial y}$; $w = \frac{\partial \phi}{\partial z}$

Polar:

$$V_{r} = \frac{\partial \varphi}{\partial r}; V_{\theta} = \frac{1}{r} \frac{\partial \varphi}{\partial \theta}; V_{z} = \frac{\partial \varphi}{\partial z}$$

$$V_{r} = \frac{\partial \phi}{\partial r}; V_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}; V_{\Phi} = \frac{1}{r \sin \theta} \left[\frac{\partial \phi}{\partial \Phi} \right]$$

Note:

Velocity potential function is defined for irrotational flow only.

Relation b/w stream line and potential lines

$$\left(\frac{dy}{dx}\right)_{\psi=constant} \times \left(\frac{dy}{dx}\right)_{\varphi=constant} = -1$$

- Streamlines are isolines of stream function.
- Equipotential lines are isolines of potential function.

 Streamlines and Equipotential lines form an orthogonal flow net.

10. Reynolds Transport Theorem

Total derivative of any property

$$\frac{DB_{sys}}{Dt} = \frac{\partial}{\partial t} \int_{C.V} \rho b d \forall + \int_{C.S} \rho b (\vec{V} \cdot \vec{n}) dA$$

C. V — Control Volume

C.S. - Control Surface Sion of PhiE

b-property per unit mass

∀-Volume

V- Velocity

A-Control Surface Area

ρ- Density

 \vec{n} - unit vector normal to control surface

11. Mass continuity Integral form

$$\frac{\partial}{\partial t} \int\limits_{C.V} \rho d \forall + \int\limits_{C.S.} \rho \big(\overrightarrow{V} \cdot \overrightarrow{n} \big) dA = 0$$

12. Momentum Conservation

$$\frac{\partial}{\partial t} \int_{C,V} \vec{V} \rho dV + \int_{C,S} \vec{V} \rho (\vec{V} \cdot \vec{n}) dA = \sum F \text{ of } C.V$$

$$\sum F = \vec{F}_{pressure} + \vec{F}_{viscous} + \vec{F}_{body} + \vec{F}_{other}$$

Differential Forms:

13. Continuity Equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0$$

$$\Rightarrow \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0$$

Here u, v and w are velocity components.

14. Cylindrical Coordinate Continuity

Equation

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r \rho V_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho V_{\theta}) + \frac{\partial}{\partial z} (\rho V_z)$$
$$= 0$$

15. Momentum Conservation

$$\begin{split} & \rho \frac{\text{Du}}{\text{Dt}} = \frac{-\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho f_x \\ & \rho \frac{\text{Dv}}{\text{Dt}} = \frac{-\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + \rho f_y \\ & \rho \frac{\text{Dw}}{\text{Dt}} = \frac{-\partial p}{\partial z} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + \rho f_z \end{split}$$

Here τ_{ij} - Stress tensor components

p-pressure

f_x, f_v and f_z-body forces

16. Navier-Stokes Equation

Momentum equation for a Newtonian fluid

Stress Terms:

$$\tau_{xx} = \lambda(\nabla \cdot \vec{V}) + 2\mu \frac{\partial u}{\partial x}$$

$$\tau_{yy} = \lambda(\nabla \cdot \vec{v}) + 2\mu \frac{\partial v}{\partial y}$$

$$\tau_{zz} = \lambda(\nabla \cdot \vec{v}) + 2\mu \frac{\partial w}{\partial z}$$

$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

$$\tau_{xz} = \tau_{zx} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)$$

$$\tau_{yz} = \tau_{zy} = \mu \Big(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \Big)$$

Stokes relation: $\lambda = \frac{-2}{2}\mu$

 $\mu \rightarrow Molecular$ viscosity coefficient

 $\lambda \rightarrow Secondary viscosity coefficient$

$$\lambda + \frac{2}{3}\mu \rightarrow \text{Bulk viscosity}$$

For a Newtonian fluid with constant density and constant viscosity,

$$\rho g_x - \frac{\partial \rho}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] = \rho \frac{Du}{Dt}$$

$$\rho g_y - \frac{\partial \rho}{\partial y} + \mu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right] = \rho \frac{Dv}{Dt}$$

$$\rho g_{z} - \frac{\partial \rho}{\partial z} + \mu \left[\frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} + \frac{\partial^{2} w}{\partial z^{2}} \right] = \rho \frac{Dw}{Dt}$$

$$C_{L} = \frac{L}{q_{\infty} s} ; C_{N} = \frac{N}{q_{\infty} s}$$
Drag coefficient,

17. Material Derivative

$$\frac{\mathbf{D}}{\mathbf{D}t} = \frac{\partial}{\partial t} + \left(\overrightarrow{\mathbf{V}} \cdot \nabla \right)$$

18. Forces on an airfoil:

$$L = N \cos \alpha - A \sin \alpha$$

$$D = N \sin \alpha + A \cos \alpha$$

 $N \rightarrow Normal force; A \rightarrow Axial Force$

 $L \rightarrow Lift$ force; $D \rightarrow Drag$ Force

 $\alpha \rightarrow$ Angle of attack

 $V_{\infty} \rightarrow$ free stream velocity

19. Aerodynamic Center:

$$\bar{x}_{ac} = \frac{-m_0}{a_0} + 0.25$$

where,
$$a_0 = \frac{dC_L}{d\alpha}$$
 and

$$m_0 = \frac{dC_{m,c/4}}{d\alpha}$$

20. Aerodynamic Coefficients:

Lift coefficient,

$$C_L = \frac{L}{q_{\infty}s}$$
; $C_N = \frac{N}{q_{\infty}s}$

Drag coefficient,

$$C_D = \frac{D}{q_{\infty}s}$$
; $C_A = \frac{A}{q_{\infty}s}$

Moment Coefficient,

$$C_{M} = \frac{M}{q_{\infty} S \overline{c}}$$

Note: $C_L = f_n(\alpha, Re, Mach no.)$

21. Coefficient of lift v/s angle of attack

 $C_L v/s \alpha$:

Cambered airfoil

Symmetric airfoil:

22. NACA Nomenclature:

Four digits: NACA 2412

First Digit: Maximum camber in hundredths of chord, Ex: Maximum camber 0.02c

Second Digit: Location of maximum camber along the chord from the leading edge in tenths of chord. Ex: 0.4c here

Last 2 digits: Maximum thickness in hundredths of chord. Ex: 0.12c

Five Digit: NACA 23012

First Digit: multiplied by 3/2 gives the design lift coefficient in tenths.

Ex:
$$\frac{2 \times 3/2}{10} = 0.3$$

Second and Third Digit: Divided by 2 gives the location of maximum camber along the chord from the leading edge in hundredths of chord.

Ex:
$$\frac{30/2}{100}$$
 c = 0.15c

Last 2 Digits: Maximum thickness in hundredths of chord

$$\mathbf{Ex}: \frac{12}{100} \mathbf{c} = 0.12 \mathbf{c}$$

Six-Digit Series: NACA 65-218

First Digit: Identifies series [6]

Second Digit: Location of minimum pressure [0.5c] in tenths of chord from leading edge.

Third Digit: Design lift coefficient in tenths; $C_L = 0.2$

Last 2 Digits: Maximum thickness in hundredths of chord

0.18c or 18% thickness

23. Pressure Coefficient:

$$C_P = \frac{p - p_\infty}{q_\infty}$$

 q_{∞} — Dynamic pressure

[Applicable from incompressible to hypersonic flow]

$$C_{\rm P} = 1 - \left(\frac{\rm V}{\rm V_{\infty}}\right)^2$$

[For incompressible flow only]

Note: C_P is non-dimensional quantity and if flow conditions are similar (for kinematic similarity), we will get the same C_p distribution.

POTENTIAL FLUID FLOW

1. Assumptions:

 a. Flow is inviscid and irrotational, thereby no vorticity.

$$\vec{\xi} = \nabla \times \vec{V} = 0$$

Note:

- a. Potential function was chosen as to satisfy irrotationality condition.
- Similarly stream function was chosen to satisfy continuity equation.

2. Potential function and Laplace Equation

$$\nabla \cdot \vec{V} = 0$$

By mathematics, \overrightarrow{V} should be gradient of scalar function, then,

$$\nabla \cdot (\nabla \phi) = 0 \text{ or } \nabla^2 \phi = 0$$

φ satisfies Laplace equation, then only flow is possible as it satisfies continuity equation.

Similarly, $\nabla^2 \psi = 0$ for stream function **Note:**

- 1. Any irrotational, incompressible flow has a velocity potential and stream function (for 2D) that both satisfy Laplace equation.
- 2. Conversely, any solution of Laplace equation represents the velocity potential or stream function (2D) for an irrotational, incompressible flow.

3. Features of Laplace Equation:

$$\varphi = \varphi_1 + \varphi_2 + \varphi_3 + \dots + \varphi_n$$

- a. Combining several potential flows gives us a new potential flow.
- b. Each of the potential flow is called an elementary flow.

 c. We can add their derivatives too, i.e., velocities (Observe elementary flows combined).

4. Circulation:

$$\Gamma = -\oint V ds = -\iint_{A} (\nabla \times V) dA$$

5. Uniform Flow:

In x direction, V_{∞} – velocity

Potential function,

$$\phi = V_{\infty} x = V_{\infty} r \cos \theta$$

Stream function, $\psi = V_{\infty} y = V_{\infty} r \sin \theta$ circulation taken in the loop C, $\Gamma = 0$

6. Source (\wedge) and sink ($-\wedge$) Flow:

Radial velocity, $V_r = \frac{\Lambda}{2\pi r}$

Tangential $V_{\theta} = 0$

Source strength $\Lambda = 2\pi r V_r m^2/s$

Potential and stream function

$$\varphi = \frac{\Lambda}{2\pi} ln \, r \ ; \ \psi = \frac{\Lambda}{2\pi} \, \theta \ ; \label{eq:phi}$$

Circulation, $\Gamma = 0$

7. **Doublet Flow:**

(b)Limiting case for a doublet

Figure: How a source-sink pair

approaches a doublet in the limiting case.

Doublet Strength $k = \Lambda l$ and $\Gamma = 0$

Potential and stream function

$$\psi = \frac{-k \sin \theta}{2\pi} \quad ; \quad \phi = \frac{k}{2\pi} \frac{\cos \theta}{r}$$

Stream line

 $\psi = constant$

$$=-\frac{k}{2\pi}\frac{\sin\theta}{r}=C$$

$$r=-\frac{k}{2\pi C}\sin\theta$$

 $r = d \sin \theta$

d-dia of Lobe

Figure: Doublet Flow with Strength k.

8. Vortex Flow:

Figure: Vortex Flow.

Vortex Strength is Γ (Circulation)

$$V_{\theta}=-\frac{\Gamma}{2\pi r}\;;\;V_{r}=0$$

$$\Gamma = -2\pi r = Constant$$

Potential and stream function

$$\varphi = \frac{-\Gamma}{2\pi}\theta \; \; ; \quad \psi = \frac{\Gamma}{2\pi} \ln r$$

A vortex of positive strength (Γ) rotates in clockwise direction.

Types of flow	Velocity	ф	ψ
Uniform flow in x-direction	$u = V_{\infty}; v = 0$	V _∞ x	$V_{\infty}y$
Source flow	$V_r = \frac{\Lambda}{2\pi r}; V_\theta = 0$	$\frac{\Lambda}{2\pi}$ ln r	$\frac{\Lambda}{2\pi}\theta$
Doublet Flow	$V_{r} = \frac{-k}{2\pi} \frac{\cos \theta}{r^{2}}; V_{\theta} = \frac{-k}{2\pi} \frac{\sin \theta}{r^{2}}$	$\frac{k}{2\pi} \frac{\cos \theta}{r}$	$\frac{-k}{2\pi} \frac{\sin \theta}{r}$
Vortex Flow	$V_{r}=0\;;\;V_{\theta}=-\frac{\Gamma}{2\pi r}$	$\frac{-\Gamma}{2\pi}\theta$	$\frac{\Gamma}{2\pi} \ln r$

Source + Uniform Flow:

Figure: Superposition of a uniform flow and a source; flow over a semi-infinite body.

$$V_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
 and $V_\theta = \frac{-\partial \psi}{\partial r}$ TE COACH

 \rightarrow Applicable for all polar coordinates Stagnation points,

$$(r,\theta) = \left(\frac{\Lambda}{2\pi V_{\infty}},\pi\right)$$

Stagnation streamline,

$$\psi = \frac{\Lambda}{2} = constant$$

Width of Rankine half body

$$b = \frac{\Lambda}{V_{\infty}}$$

9. Source + Sink + Uniform Flow

Figure: Superposition of a uniform flow and a source-sink pair; flow over a Rankine oval

$$\psi = V_{\infty} r \sin \theta + \frac{\Lambda}{2\pi} \theta_1 - \frac{\Lambda}{2\pi} \theta_2$$
Stagnation Points

$$OA = OB = \sqrt{b^2 + \frac{\Lambda b}{\pi V_{\infty}}}$$

and are at $\theta = 0, \pi$

Stagnation Streamline, $\psi = 0$

10. Non-Lifting Flow Over Cylinder

Figure: Superposition of a uniform flow and a doublet; non-lifting flow over a circular cylinder.

$$\psi = V_{\infty} r \sin \theta \left(1 - \frac{R^2}{r^2} \right)$$
Where,
$$R^2 = \frac{k}{2\pi V_{\infty}}$$

$$\left(V_r = V_{\infty} \cos \theta \left(1 - \frac{R^2}{r^2} \right) \right)$$

$$\begin{cases} V_{r} = V_{\infty} \cos \theta \left(1 - \frac{R^{2}}{r^{2}} \right) \\ V_{\theta} = -V_{\infty} \sin \theta \left(1 + \frac{R^{2}}{r^{2}} \right) \end{cases}$$

Ther are two stagnation Points, (R, 0) and (R, π) At stagnation streamline, $\psi = 0$

On cylinder surface, at all points r=R

$$V_r=0;\;V_\theta=-2V_\infty\sin\theta$$

Figure: Sign Convention for V_{θ} in polar coordinates.

Note:

1. The maximum velocity is $2V_{\infty}$ at top and bottom of the cylinder.

Maximum acceleration [Flow $r\to\! R]$ occurs at $\theta=135^\circ,225$ °and $a_{max}=\frac{2V_{max}^2}{R}$ Maximum deceleration occurs at $\theta=45^\circ,315^\circ$

2. Pressure coefficient

$$C_P = 1 - \left(\frac{V}{V_{\infty}}\right)^2$$

$$C_P = 1 - 4\sin^2\theta$$

Figure: Pressure coefficient distribution over the surface of a circular cylinder, theoretical results for inviscid, incompressible flow.

11. Lifting Flow Over Cylinder:

Figure: The synthesis of lifting flow over a circular cylinder.

Non-lifting flow over cylinder + Vortex flow Stream function

$$\psi = (V_{\infty} r \sin \theta) \left(1 - \frac{R^2}{r^2} \right) + \frac{\Gamma}{2\pi} \ln \frac{r}{R}$$

 $V_{\rm r}$ and V_{θ} can be achieved simply by adding velocities of non-lifting flow and vortex flow.

$$V_{\rm r} = \left(1 - \frac{R^2}{r^2}\right) V_{\infty} \cos \theta$$

$$V_{\rm r} = -\left(1 + \frac{R^2}{r^2}\right) V_{\infty} \sin \theta - \Gamma/2\pi r$$

stagnation Point r = R

$$\theta = \sin^{-1} \left[\frac{-\Gamma}{4\pi V_{\infty} R} \right]$$

Figure: Stagnation points for the lifting flow over a circular cylinder.

- a. $\Gamma < 4\pi V_{\infty} R \rightarrow 2$ stagnation points
- b. $\Gamma = 4\pi V_{\infty} R \rightarrow 1$ stagnation point \rightarrow @ $\left[R, -\frac{\pi}{2}\right]$
- c. $\Gamma > 4\pi V_{\infty} R \rightarrow 1$ stagnation point inside cylinder and 1 stagnation point lifts off the surface of cylinder. And this condition is also satisfied by r=R and $\theta=\pi/2$ or $-\pi/2$ So,

$$r = \frac{\Gamma}{4\pi V_{\infty}} \pm \sqrt{\left(\frac{\Gamma}{4\pi V_{\infty}}^2\right) - R^2}$$

Velocity on the surface of cylinder:

$$V = V_{\theta} = -2V_{\infty}\sin\theta - \frac{\Gamma}{2\pi R}$$

12. Kutta-Joukowski Theorem:

Lift per unit span,

$$L' = \rho_{\infty} V_{\infty} \Gamma$$

$$C_{L} = \frac{\Gamma}{RV_{L}}$$

INCOMPRESSIBLE FLOW OVER AIRFOILS

- Air foil leading edge is usually circular with radius of approx. 0.02c and c is chord length.
- Higher the C_{Lmax} , lower is the stalling speed as $\left(L = \frac{1}{2} \ \rho_{\infty} V_{\infty}^2 \ SC_L\right)$
- $\alpha_{L=0}$ is negative for positively cambered airfoils and positive for negative cambered airfoils.
- Lift Slope a₀ is not influenced by Re, but C_{Lmax} increases with increase in Re
- The moment coefficient is also insensitive to Re except at large α
- C_d is sensitive to Re and decreases at higher Re for the order of Re $\sim 10^6$.
- Aerodynamic center, $C_{m,ac} = constant$ $\frac{\partial C_m}{\partial \alpha} \Big|_{ac} = 0$

1. Vortex Sheet:

$$\begin{split} & \varphi(s,z) = \frac{-1}{2\pi} \int_a^b \theta \, \gamma \, ds \\ & \gamma = \int_a^b \gamma(s). \, ds \quad ; \quad dV = \frac{-\gamma ds}{2\pi r} \\ & \gamma(s) = \frac{d\Gamma}{ds} \end{split}$$

2. The local jump in tangential velocity across the vortex sheet is equal to local sheet strength.

$$\gamma = \mathbf{u}_1 - \mathbf{u}_2$$

Note: The strength of vortex sheet $\gamma(s)$ is calculated such that, the camber line become a streamline of the flow.

3. Kutta Condition:

$$\gamma(T.E) = 0$$

Trailing edge is a stagnation point for finite angled TE airfoils.

4. Kelvin's Circulation Theorem:

$$Γ1 = Γ2$$
Total derivative $\frac{DΓ}{Dt} = 0$

The time rate of change of circulation around a closed curve consisting of same fluid elements is zero.

THIN AIRFOIL THEORY

For the camber line to be a streamline of flow. Net normal velocity must be zero.

$$V_{\infty,n} + w(s) = 0$$

$$V_{\infty,n} = V_{\infty} \sin \left[\alpha + \tan^{-1} \left(\frac{-dz}{dx} \right) \right]$$

Approximating, i. e. , $V_{\infty,n} = V_{\infty} \left(\alpha - \frac{dz}{dx} \right)$

and w(s)
$$\approx$$
 w(x); w(x) = $-\int_0^c \frac{\gamma(\xi)d\xi}{2\pi(x-\xi)}$

Fundamental equation of thin airfoil theory

$$\frac{1}{2\pi} \int_0^c \frac{\gamma(\xi)d\xi}{(x-\xi)} = V_{\infty} \left(\alpha - \frac{dz}{dx}\right)$$

Note:ning Center

For symmetric airfoil camber line coincides with chord line,

i. e.,
$$\frac{dz}{dx} = 0$$

Symmetric Airfoil

$$\gamma(\theta) = 2\alpha V_{\infty} \frac{(1 + \cos \theta)}{\sin \theta}$$
 Clockwise θ here θ

•
$$C_L = 2\pi\alpha$$

- Lift slope = $\frac{dC_L}{d\alpha}$ = 2π
- Moment coefficient.

$$C_{m,le} = -\frac{C_L}{4}$$

$$C_{m,\frac{c}{4}} = C_{m,ac} = 0$$

 The aerodynamic center and center of pressure are both at the quarter chord point.

Cambered Airfoil: Circulation

$$\Gamma = cV_{\infty} \left[\pi A_{o} + \frac{\pi}{2} A_{1} \right]$$

$$\gamma(\theta) = 2V_{\infty} \left[A_{o} \left(\frac{1 + \cos \theta}{\sin \theta} \right) + \sum_{n=1}^{\infty} A_{n} \sin \theta \right]$$

$$C_{L} = 2\pi \left[\alpha + \frac{1}{\pi} \int_{0}^{\pi} \frac{dz}{dx} \left(\cos \theta_{0} - 1 \right) d\theta_{o} \right]$$

$$C_{L} = \pi(2A_0 + A_1)$$

$$\alpha_{L=0} = \frac{-1}{\pi} \int_0^{\pi} \frac{dz}{dx} (\cos \theta_0 - 1) d\theta_0$$

$$[: C_L = 2\pi(\alpha - \alpha_{L=0})]$$

$$C_{\text{m,le}} = -\frac{C_{\text{L}}}{4} + \frac{\pi}{4} (A_1 - A_2)$$
 TATE COACH

$$C_{m,c/4} = \frac{\pi}{4} (A_2 - A_1)$$

Usuallly, $A_1 > A_2$

$$X_{cp} = \frac{c}{4} \left[1 + \frac{\pi}{C_L} (A_1 - A_2) \right]$$

Fourier Coefficients:

$$A_{o} = \alpha - \frac{1}{\pi} \int_{0}^{\pi} \frac{dz}{dx} d\theta_{0}$$

$$A_{n} = \frac{2}{\pi} \int_{0}^{\pi} \frac{dz}{dx} \cos n\theta_{0} d\theta_{0}$$

- Lift slope = $\frac{dC_L}{d\alpha}$ = 2π
- The aerodynamics center is at the quarter-chord point.
- The center of pressure varies with the lift coefficient.

INCOMPRESSIBLE FLOW OVER WING

 $\omega \rightarrow downwash.$

 D_i induced drag [L sin α_1]

For airfoil, $C_l = 2\pi\alpha$;

For wing $C_L = a(\alpha - \alpha_i)$

1. Definitions:

Geometric twist: α is different at different spanwise locations.

Washout: If the tip is at a higher α than the root

Aerodynamic Twist: Different airfoil sections along the span with different values of $\alpha_{L=0}$

2. Biot Savart Law:

The strength of the vortex filament is defined as Γ . Consider a directed segment of the filament dl, as shown in Figure. The radius vector from dl to an arbitrary point P in space is r. The segment dl induces a velocity at P

$$dV = \frac{\Gamma}{4\pi} \frac{dL \times r}{|r|^2}$$

3. Velocity induced at a point 'P' by an infinite straight vortex filament.

Figure: Velocity induced at point P by an infinite, straight vortex filament.

$$V = \frac{\Gamma}{2\pi h}$$
EXCLUSIVE GATE COACH

4. Semi-infinite Vortex:

Figure: Velocity induced at point P by a semi-infinite straight vortex filament.

$$V = \frac{\Gamma}{4\pi h}$$

- 5. Helmholtz's Vortex Theorems:
 - i. The strength of a vortex filament is constant along its length.

- ii. A vortex filament cannot end in a fluid it must extent to the boundary of the fluid (which can be $\pm\infty$) or form a closed path.
- 6. Prandtl's lifting line theory

$$\omega(y) = \frac{-\Gamma}{4\pi} \frac{b}{\left(\frac{b}{2}\right)^2 - y^2}$$

Note: At trailing edge $y = \pm \frac{b}{2}$, downwash is infinity. So, this model was not accurate.

$$\omega(y_0) = \frac{-1}{4\pi} \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{\left(\frac{d\Gamma}{dy}\right) dy}{y_0 - y}$$

$$\alpha_{i}(y_{0}) = \tan^{-1}\left(\frac{-\omega(y_{0})}{V_{\infty}}\right) = \alpha \frac{-\omega(y_{0})}{V_{\infty}}$$

$$\therefore \ \alpha_i(y_0) = \frac{1}{4\pi V_\infty} \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{\left(\frac{d\Gamma}{dy}\right) dy}{y_0 - y}$$

Elliptical Lift Distribution:

$$\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$$

: Circulation and Lift distribution

$$L'(y) = \rho_{\infty} V_{\infty} \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$$

Downwash,
$$\omega(\theta_0) = -\frac{\Gamma_0}{2b}$$

→Constant downwash for elliptic distribution

Induced angle of attack,

$$lpha_i = rac{\Gamma_0}{2bV_\infty}$$
 ; $\left[lpha_i = -rac{\omega}{V_\infty}
ight]$ ATE COACHII

$$\mbox{Lift}\,, \qquad L = \, \rho_{\infty} V_{\infty} \Gamma_0 \frac{b}{4} \pi \label{eq:lift}$$

Alternative:

Induced angle of Attack:

$$\alpha_{\rm i} = \frac{C_{\rm L}}{\pi A R}$$

Induced drag,
$$C_{Di} = \frac{C_L^2}{\pi AR}$$

AR- Aspect Ratio

Note: For elliptic lift distribution the wing platform is elliptical

General Lift Distribution:

$$C_{Di} = \frac{C_L^2}{\pi AR} (1 + \delta) = \frac{C_L^2}{\pi e AR}$$

$$\frac{1}{1+\delta} = e$$

→ Ostwalds Span efficiency factor

Taper ratio =
$$\frac{c_t}{c_r}$$
; $c_t \rightarrow tip$ chord;

$$c_r \rightarrow root chord$$

Lift Curve Slope:

For airfoil,
$$a_o = \frac{dC_l}{d\alpha}$$

Finite wing,
$$a = \frac{dC_L}{d\alpha}$$

$$a_0 > a$$

$$L = \rho_{\infty} V_{\infty} \Gamma_0 \frac{b}{4} \pi$$

$$a = \frac{a_0}{1 + \frac{a_0}{\pi eAR}} \text{ (in radian)}$$

Note:

a. If we use α_{eff} ($\alpha-\alpha_i)$ and calculate $C_L \mbox{ using slope, } a_0 \mbox{ then,}$

$$C_{L} = a_{0}(\alpha_{eff} - \alpha_{L=0})$$

b. If we use geometric AOA $\alpha,$ then slope used is a

$$C_L = a(\alpha - \alpha_{L=0})$$

EXCLUSIVE GATE COACHING BY IIT/IISC GRADUATES

A division of PhIE Learning Center

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Admission Open for

GATE 2025/26

Live Interactive Classes

AEROSPACE ENGINEERING

