

GATE -ME FLUID MECHANICS

Table Of Content

Fluid Properties	01
Fluid Statics	04
Fluid Kinematics	05
Fluid Dynamics	07
Flow Through Pipes	09
Boundary Layer Theory	10
Turbulent Flow	11
Dimensional Analysis	12
Flow Over Submerged Bodies	12

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

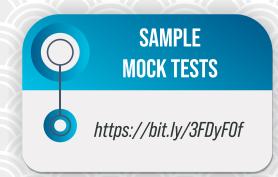
Topic Wise Tests

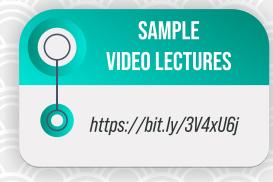
Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC





Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Fluid Mechanics

Chapter 1: FLUID PROPERTIES

Note:

- 1. For a static fluid, shear force is zero.
- 2. Fluids only show resistance to compressive loads.

$$k = Bulk Modulus = \frac{Hydrostatic stress}{Volumetric strain}$$
$$= \frac{-dp}{dV/V}$$

V= initial volume

$$\beta = \frac{1}{k}$$

 $\beta = Compressibility$

1. Isothermal Bulk Modulus $(k_T) = p$

Where p is absolute pressure

The isothermal Compressibility

$$(\beta_{\rm T}) = \frac{1}{p}$$

Valid for ideal gas

2. Adiabatic bulk modulus $(k_{adiabatic}) = \gamma p$

Where γ = Ratio of specific heats for

air,
$$\gamma = 1.4$$

$$\beta_{\text{adiabatic}} = \frac{1}{\gamma p}$$

Valid for ideal gas

Note: For real gas to find isothermal bulk modulus we have to use thermodynamic relation.

For Incompressible fluid $\beta=0$ Reason of viscosity(μ) in liquids \rightarrow Cohesive force (Molecular Bonding) Reason of viscosity(μ) in gases \rightarrow Molecular Collision.

- Temperature $\uparrow \Rightarrow \mu_{liquid} \downarrow \Rightarrow \nu_{liquid} \downarrow$ Where $\nu_{liquid} \Rightarrow$ Kinematic viscosity of liquid.
- Temperature $\uparrow \Rightarrow \mu_{gas} \uparrow \Rightarrow \nu_{gas} \uparrow \uparrow$
- Pressure $\uparrow \Rightarrow \mu_{liquid}$: same \Rightarrow ν_{liquid} : same
- Pressure $\uparrow \Rightarrow \mu_{gas}$: same $\Rightarrow \nu_{gas}$: \downarrow

Newton's Law of Viscosity:

$$\tau = \mu \frac{du}{dy} \ \tau = shear \, stress$$

where $\mu = Viscosity/Dynamic viscosity$

Unit of $\mu \rightarrow kg/(meter-sec)$ or pascal-sec

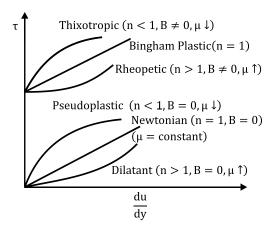
$$\frac{1 \text{kg}}{\text{meter-sec}} = 10 \text{ poise ATES}$$

1poise = 0.1pascal-sec

Kinematic viscosity $(v) = \text{meter}^2/\text{sec}$

$$\frac{1m^2}{sec} = 10^4 stokes$$

Stokes is CGS unit of kinematic viscosity



For Non-Newtonian Fluid:

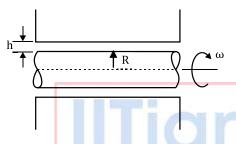
$$\tau = A \left(\frac{du}{dy}\right)^n + B$$

Ideal Fluid:

- Non viscous
- Incompressible

Power Lost in Bearing due to Fluid Friction:

Case 1:



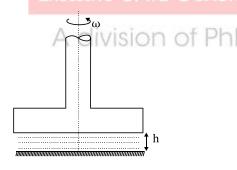
$$Power = \frac{2\pi\mu\omega^2 LR^3}{h}$$

R = Radius of shaft

h = oil film gap

 $\omega = \text{angular velocity of shaft}$

Case 2:



$$Torque = \frac{\pi\mu\omega R^4}{2h}$$

Surface Tension:

Tensile force acting across imaginary short and straight elemental line divided by the length of the line.

$$\sigma = \frac{Force}{Length} \left(\frac{Newton}{meter} \right)$$

Reason of surface tension:

It is due to unbalanced cohesive force

$$\sigma \propto \frac{1}{\text{Temp}}$$

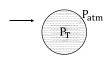
Eg:

$$\sigma_{\text{water-air}} = 0.073 \text{ N/m}$$

$$\sigma_{Hg-air} = 0.497 \text{ N/m}$$

$$\sigma_{liguid \text{-}liquid} = 0 \text{(Miscible)}$$

Case 1: Liquid Droplet



$$p_T > p_{atm}$$

$$\Delta p = p_T - p_{atm}$$

$$\Delta p = \frac{4\sigma}{d}$$

Case 2: Soap Bubble

Actual Formula

$$\Delta p = \frac{4\sigma}{d_1} + \frac{4\sigma}{d_2}$$

But here $d_1 \approx d_2 = d$

$$\Delta p = \frac{8\sigma}{d}$$

Case 3: Liquid Jet

$$\Delta p = \frac{2\sigma}{d}$$

Surface Energy:

Potential energy of surface due to surface tension.

$$E = \sigma \cdot A$$
 (A = Surface area)

GATE-ME-QUICK REVISION FORMULA SHEET

A. Work done (WD) to convert large droplet in small droplet:

$$WD = 4\pi R^2 \sigma (n^{1/3} - 1)$$

Where R = Radius of large droplet

n = No. of equal sized droplet.

B. Work done to get big droplet from n small droplet

$$=4\pi r^2\sigma(n-n^{2/3})$$

Where r = Small size droplet radius.

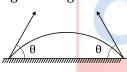
Wetting and Non-wetting Phenomena:

Mutual property of liquid surface, it depends upon.

Case A:

If adhesion >>> cohesion then liquid will wet the surface.

Eg: Water glass



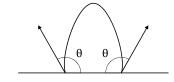
Glass

For pure water $\theta = 0^{\circ}$

Case B:

If cohesion >>> Adhesion liquid will have non-wetting characteristics with surface.

Eg: Hg-glass

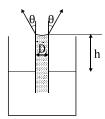


 $\theta > \pi/2$

Capillarity:

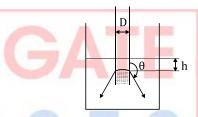
With a tube of very fine diameter (d < 10mm).

Reason: Due to cohesive and adhesive forces.



Capillary Rise (Adhesion > cohesion)

$$h = \frac{4\sigma\cos\theta}{\rho gD}$$



Capillary fall (Adhesion < Cohesion)

$$h = \frac{4\sigma \cos \theta}{\rho gD}$$

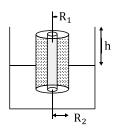
 θ = Angle of contact

Generally
$$\theta < \pi/2$$
 = 32° (Glass water) = 132° (Glass-Hg)

= 0°(Pure water-glass)

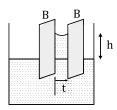
Special Cases

1.



$$h = \frac{2\sigma\cos\theta}{\rho g(R_2 - R_1)}$$

2.



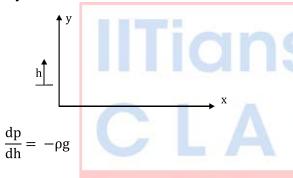
t = distance between plates

$$h = \frac{2\sigma\cos\theta}{\rho gt}$$

Chapter 2: FLUID STATICS

 $p_{absolute} = p_{atm} + p_{gauge}$

Hydrostatic Law:



Hydrostatic Forces:

 $F = \rho g \overline{h} A$

 $\overline{h} = \text{distance of centre of gravity of body}$ from free liquid surface.

Location of hydrostatic forces

$$\overline{h}_{cp} = \overline{h} + \frac{I_{Gx} \sin^2 \theta}{A\overline{h}}$$

 $\overline{h}_{cp} = \mbox{distance of pressure force from} \label{eq:hcp}$ free liquid surface.

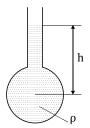
Pascal's Law:

Intensity of pressure at any point in a fluid at rest is same in all directions.

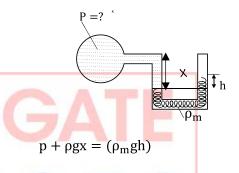
Pressure Measurement Device:

1. Piezometer:

It measures +ve gauge pressure of liquid only.

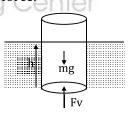


2. Manometer:



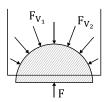
Buoyancy and Flotation:

When a body is immersed either partially or completely then net vertical force exerted by the fluid on the body known as buoyancy force.



$$F_v = \rho g V_{displaced} \boxed{mg = F_v}$$

Special Case:



 $F_B = 0$ (Buoyancy force = 0)

⇒ Stability condition for completely submerged body.

1. Stable equilibrium:

If B above G

B = centre of Buoyancy

C = Centre of gravity

2. Unstable equilibrium: B below G

3. Neutral equilibrium: If B coincides G

⇒ Stability condition for partially sub-

merged bodies (Floating bodies)

1. Stable equilibrium: M above G

2. Unstable equilibrium: M below G

3. Neutral equilibrium: M coincide G

M = Meta centre point.

GM (Meta centric height):

$$GM = \frac{I}{V_{\text{displaced}}} - BG$$

I = Moment of inertia of the plane cutted

by the surface level of liquid.

 $V_{displaced} = Volume of liquid displaced by$

the body.

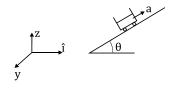
If GM > 0 (stable equilibrium condition)

\Rightarrow Time period of oscillation (T).

$$T = 2\pi \sqrt{\frac{R^2}{g(GM)}}$$

R = Radius of gyration

Accelerated vessel containing liquid.



$$a = a_x \hat{i} + a_z \hat{k}$$

$\tan \theta = \frac{a_x}{a_z + g}$

If vessel accelerating in vertical direction:

For vertical upward motion

$$\frac{\partial p}{\partial v} = -\rho (g + a_y)$$

$$\frac{\partial p}{\partial y} = -\rho(g - a_y)$$

Free fall case:

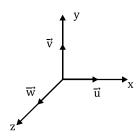
$$a_{y} = g$$
, $a_{x} = 0$

$$\frac{\partial \mathbf{p}}{\partial \mathbf{v}} = 0$$

$$p = 0(Gauge)$$

Chapter 3: FLUID KINEMATICS

Acceleration:



$$a = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

$$a_{x} = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + \frac{\partial u}{\partial t}$$

$$a_y = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \frac{\partial v}{\partial t}$$

$$a_z = u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} + \frac{\partial w}{\partial t}$$

$$\frac{\partial u}{\partial t}$$
, $\frac{\partial v}{\partial t}$, $\frac{\partial w}{\partial t}$

These are local component or temporal component of acceleration.

$$\vec{a} = \vec{a}_{convective} + \vec{a}_{temporal}$$

Angular Velocity:

$$\vec{V} = u\hat{i} + v\hat{j} + w\hat{k}$$

$$\omega = \frac{1}{2} (\nabla \times \vec{\mathbf{v}})$$

$$\omega_{x} = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)$$

$$\omega_{y} = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)$$

$$\omega_{z} = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$

Vorticity $(\Omega) = \nabla \times \vec{v} = 2\vec{\omega}$

Linear strain rate:

$$\varepsilon_{\dot{x}x} = \frac{\partial u}{\partial x}, \varepsilon_{\dot{y}y} = \frac{\partial v}{\partial y}, \varepsilon_{\dot{z}z} = \frac{\partial w}{\partial z}$$
 TE COACHIN

$$\varepsilon_{\dot{v}} = \varepsilon_{\dot{x}x} + \varepsilon_{\dot{y}y} + \varepsilon_{\dot{z}z}$$

 $\epsilon_{\dot{v}}$ =Volumetric strain rate

 $\epsilon_{\dot{v}}=0$ For incompressible flow

Shear Strain Rate:

$$\varepsilon_{\dot{x}y} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

$$\varepsilon_{\dot{x}z} = \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

$$\epsilon_{\dot{y}z} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$$

u = x component of velocity

v = y component of velocity

w = z component of velocity

Shear deformation rate /Angular de-

formation rate:

$$\gamma_{\dot{x}y} = \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right]$$

Circulation (Γ) :

$$\Gamma = \int \overrightarrow{V} \cdot \overrightarrow{dr} \ (\text{or)} \ \Omega \times \text{Area} \ (\text{or)} \iint \Omega dA$$

$$\Omega = Vorticity$$

Velocity Potential Function (ϕ) for 3D flow.

$$u = \frac{\partial \Phi}{\partial x}$$

$$\mathbf{v} = \frac{\partial \Phi}{\partial \mathbf{y}}$$

$$\partial \Phi$$

$$w = \frac{\partial \Phi}{\partial z}$$

In Polar coordinates:

$$u_r = \frac{\partial \varphi}{\partial r}$$

$$_{\rm G}$$
 By $V_{\rm o}=+\frac{1}{r}\frac{\partial \Phi}{\partial \theta}$ RADUATES

- If φ exists ⇒ Flow is irrotational
- If φ satisfies Laplace equation ⇒
 Flow is possible.
- Slope of equipotential line

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\mathrm{u}}{\mathrm{v}}$$

Stream Function (ψ) (For 2D Flow):

$$u = \frac{\partial \psi}{\partial v}$$

$$v = -\frac{\partial \psi}{\partial x}$$

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$

$$V_{\theta} = -\frac{\partial \psi}{\partial r}$$

- If ψ exists \Rightarrow Flow is possible
- If ψ satisfied Laplace equation ⇒
 Flow is irrotational
- Slope of streamline

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{v}}{\mathrm{u}}$$

Laplace Equation:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

$$\nabla^2 \Phi = 0$$

 ∇^2 (any variable)

= 0 (Laplace Equation)

Discharge Per unit length = $|\psi_1 - \psi_2|$

Chapter 4: FLUID DYNAMICS

F_{pressure}, F_{gravity}, F_{viscous}

⇒ Use Navier-strokes equation

 $F_{pressure}$, $F_{gravity} \Rightarrow Euler equation$

F_{pressure}, F_{gravity} and incompressible

⇒ Bernoulli's equation

A division of Phile

Ideal Bernoulli's Equation: (Can be used for rotational flow also but Flow must be along same streamline)

$$\frac{p}{\rho g} + \frac{V^2}{2g} + z = Constant$$

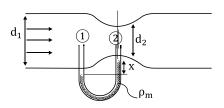
Assumptions:

- Non viscous
- Steady flow
- Incompressible flow of incompressible fluid
- Irrotational flow.

For Practical use (Bernoulli's equation with losses)

$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_{losses}$$

1. Venturimeter:



 d_1 = Pipe diameter

 d_2 = Throat diameter

$$Q_{actual} = \frac{C_d \times A_1 A_2 \times \sqrt{2gh}}{\sqrt{A_1^2 - A_2^2}}$$
$$A_1 = \frac{\pi}{4} d_1^2$$

$$A_2 = \frac{\pi}{4} d_2^2$$

 C_d = Coefficient of discharge

$$C_d = 0.94 \text{ to } 0.98$$

Where h = pressure head difference/
Piezometric head difference.

$$h = x \Big(\frac{\rho_m}{\rho} - 1 \Big)$$

for both horizontal and inclined Venturimeter.

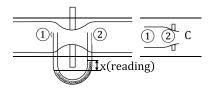
$$h = x \left(1 - \frac{\rho_m}{\rho} \right)$$

for inverted tube manometer where

$$(\rho_m < \rho)$$

x = Manometric deflection

Orifice Meter:



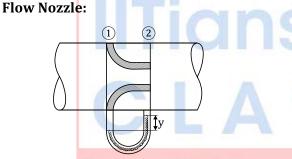
$$C_d = 0.62 \text{ to } 0.64$$

$$C_{C} = \frac{A_{CC}}{A_{2}}$$

$$Q_{actual} = \frac{c_d \cdot A_1 A_2 \sqrt{2gh}}{\sqrt{A_1^2 - A_2^2}}$$

$$C_d = C_c \cdot C_v$$

 $C_c = \text{coefficient of contraction} = \frac{A_C}{A_A}$



$$Q_{act} = \frac{C_d(A_1A_2)\sqrt{2gh}}{\sqrt{A_1^2 - A_2^2}}$$

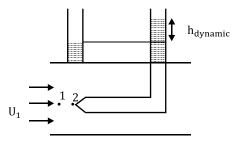
$$C_d = 0.72 \text{ to } 0.74$$

$$C_{act} = \frac{C_d(A_1A_2)\sqrt{2gh}}{\sqrt{A_1^2 - A_2^2}}$$
Learning Center

$$C_d = 0.72 \text{ to } 0.74$$

$$h=y\Big(\!\frac{\rho_m}{\rho}\!-1\!\Big)$$

Pitot Tube: (Measures stagnation pressure head).



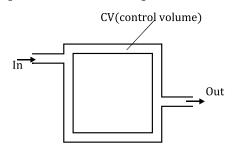
$$u_1 = \sqrt{2g h_{dynamic}}$$

$$h_{dynamic} = x \left(\frac{\rho_m}{\rho} - 1 \right)$$

x = Manometric deflection

$$\mathbf{h} = \left(\frac{\mathbf{p}_2}{\rho \mathbf{g}} + \mathbf{Z}_2\right) - \left(\frac{\mathbf{p}_1}{\rho \mathbf{g}} + \mathbf{Z}_1\right)$$

Impulse Momentum Equation:



$$\vec{F}_{\rm net} + \sum \dot{m}_i \vec{V}_i = \left(\frac{d(mV)}{dt}\right)_{CV} + \sum \dot{m}_o \vec{V}_o$$

$$f_{\text{net}} = \dot{m}_{\text{o}} V_{\text{o}} - \dot{m}_{\text{i}} V_{\text{i}}$$

V_i = inlet velocity of fluid, V_o= exit velocity of fluid

If pressure forces considered, then

$$\begin{split} F_x + p_1 A_1 - p_2 A_2 \cos \theta \\ &= \dot{m} [V_2 \cos \theta - V_1] \\ F_y - p_2 A_2 \sin \theta = \dot{m} [V_2 \sin \theta] \end{split}$$

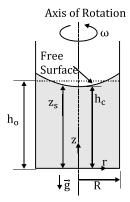
 f_{net} or F_x , $F_y \rightarrow$ Force exerted by pipe bend or structure on fluid element.

Rotational flow in a Cylindrical Container:

Equation of motion for vortex flow

$$dp = \rho r \omega^2 dr - \rho g \, dz$$

GATE-ME-QUICK REVISION FORMULA SHEET

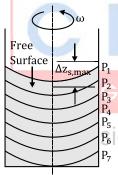


the equation of the free surface

$$z_s = h_0 - \frac{\omega^2}{4g} (R^2 - 2r^2)$$

The maximum vertical height occurs at the edge where r = R, and the maximum height difference between the edge and the center of the free surface is

$$\Delta z_{s,max} = z_s(R) - z_s(0) = \frac{\omega^2}{2g}R^2$$



where h_0 is the original height of the fluid in the container with no rotation

Chapter 5: FLOW THROUGH PIPES

Darcy Weisbech Equation:

Head loss due to friction (h_f)

$$h_f = \frac{FLV^2}{2gd} \mbox{ Valid for Laminar and Turbulent} \label{eq:hf}$$

$$F = \frac{64}{Re}$$
 for Laminar flow

F (Friction factor) Turbulent Flow:

1. Smooth pipe

$$F = \frac{0.316}{Re^{1/4}}$$

2. Rough pipe

$$\frac{1}{\sqrt{F}} = 2\log_{10}\left(\frac{R}{k_s}\right) + 1.74$$

 k_s = Surface roughness value

$$Re = Reynolds \ Number = \frac{\rho V D_H}{\mu}$$

$$D_{H}$$
 = Hydraulic diameter = $\frac{4 \text{ A}}{P_{\text{wetted}}}$

A = cross sectional area

 P_{wetted} = wetted parameter

Laminar Flow:

1. Through Pipe:

(A)
$$\tau = -\frac{r}{2} \left(\frac{\partial p}{\partial x} \right)$$

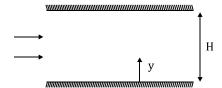
(B)
$$u = -\frac{1}{4\mu} \left(\frac{\partial p}{\partial x} \right) [R^2 - r^2]$$

(C)
$$u_{\text{max}} = \frac{1}{4\mu} \left(-\frac{\partial p}{\partial x} \right) (R^2)$$

(D)
$$u_{avg} = \frac{u_{max}}{2}$$

2. Laminar Flow Through Two fixed Parallel Plates:

Case A:



$$\tau = -\frac{\partial p}{\partial x} \Big(\frac{H}{2} - y \Big)$$

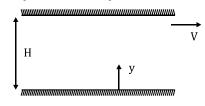
$$\tau_{\text{wall}} = -\frac{\partial p}{\partial x} \left(\frac{H}{2}\right)$$

$$u = \frac{1}{2\mu} \left(\frac{\partial p}{\partial x} \right) (Hy - y^2)$$

$$u_{max} = -\frac{1}{8\mu} \left(\frac{\partial p}{\partial x} \right) (H^2)$$

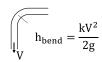
$$u_{avg} = \frac{2 u_{max}}{3}$$

Case B: (couette flow)



$$u = -\frac{1}{2u} \left(\frac{\partial p}{\partial x} \right) [Hy - y^2] + \frac{Vy}{H}$$

Bend Loss:



Total energy line (TEL) = $\frac{p}{\rho g} + \frac{V^2}{2g} + z$

Hydraulic gradient line (HGL) = $\frac{p}{\rho g} + z$

Pipe in series

$$Q_1$$
 Q_2

$$Q = Q_1 = Q_2$$

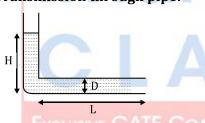
$$h_f = h_{f_1} + h_{f_2}$$

Pipes in Parallel:

 $Q = Q_1 + Q_2$

 $h_f = Head loss due to friction$

Power Transmission through pipe:



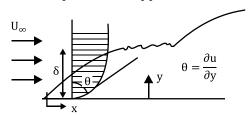
$$\eta\% = \frac{\text{Power output}}{\text{Power input}} = \frac{H - H_f}{H}$$

 h_f = Head loss due to friction

H = Inlet head

Chapter 6: BOUNDARY LAYER THEORY

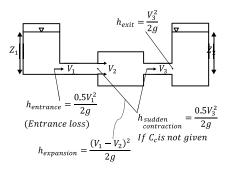
Boundary layer region is highly viscous and rotational region of flow⇒ so Bernoulli's equation not applicable.



Condition for Max Power Transmission:

$$h_f = \frac{h}{3}$$

So
$$\eta_{max} = 66.67 \%$$



Boundary Condition:

at
$$x = 0$$
, $\delta = 0$

at
$$y = 0$$
, $u = 0$

at
$$y = \delta$$
, $\frac{\partial u}{\partial v} = 0$

at
$$y = 0$$
, $\frac{\partial^2 u}{\partial y^2} = 0$

 $\Rightarrow \delta^*[Displacement\ thickness]$

$$= \int_0^{\delta} \left(1 - \frac{U}{U_{\infty}} \right) dy$$

Loss pf mass flow rate = $(\rho \delta^* U_{\infty}.b)$

b = Width of plate

Momentum Thickness $[\theta]$

$$\theta = \int_0^{\delta} \frac{U}{U_{\infty}} \left(1 - \frac{U}{U_{\infty}} \right) dy$$

$$F_{drag} = \rho A U_{\infty}^2 \Rightarrow \rho(\theta \times b) \times U_{\infty}^2$$

Energy Thickness [δ**]

$$= \int_0^\infty \frac{U}{U_\infty} \left(-\left(\frac{U}{U_\infty}\right)^2 \right) dy$$

Shape Factor =
$$\frac{\delta^*}{\theta}$$

 $\delta > \delta^* > \delta^{**} > \theta$ valid for all velocity

profile.

Von Karman Momentum Integral Equation.

$$\frac{\tau_o}{\rho U_{\infty}^2}$$

$$= \frac{d\theta}{dx}$$
 Valid for laminar and turbulent

Used when velocity profile given in the problem.

$$T_o = \mu \left(\frac{\partial u}{\partial y}\right)_{v=0}$$

Blasius Equation: (Used when velocity profile is not given)

Laminar Flow:

$$(\text{Re} < 5 \times 10^5)$$

$$\delta = \frac{5x}{\sqrt{Re_{v}}}$$

$$C_D = \frac{1.328}{\sqrt{Re_L}}$$

$$C_{f,x} = \frac{0.664}{\sqrt{Re_x}}$$

Re = Reynold's Number

 C_D = Average drag coefficient.

 $C_{f,x}$ = Local Drag Coefficient.

$$\delta^* = \frac{1.72(x)}{\sqrt{Re_x}}$$

$$\theta = \frac{0.664(x)}{\sqrt{Re_x}}$$

Turbulent Flow: (Used when 1/7th law

given in problem)
$$\frac{U}{U_{\infty}} = \left(\frac{y}{\delta}\right)^{1/7}$$

$$\delta = \frac{0.16(x)}{(Re)^{\frac{1}{7}}}$$

G BY
$$\delta^* = \frac{0.02(x)}{(Re)^{\frac{1}{7}}}$$
 PRADUATES

$$\theta = \frac{0.016(x)}{(Re)^{\frac{1}{7}}}$$

Boundary Layer Separation:

$$\frac{\partial u}{\partial y}\Big|_{y=0} = 0 \text{ and } \frac{\partial p}{\partial x} > 0$$

Chapter 7: TURBULENT FLOW

Reynold' Stress $(\tau) = \rho u'v'$

$$u = \overline{u} + u', \qquad v = v' + v^{-}$$

$$\overline{u} = \frac{\int_0^T u dt}{T}$$
 , $\overline{u'} = 0$

$$\tau = \tau_v + \tau_t$$

 $\tau_v = Viscous shear stress$

 $\tau_t = \text{Eddy shear stress}$

 $u = 2.5 v^* ln(y) + c Logarithmic distribu-$

tion in turbulent flow through pipe.

$$\frac{u_{\text{max}} - u}{v^*} = 5.75 \log_{10} \left(\frac{R}{v}\right)$$

$$\frac{u - \overline{u}}{v^*} = 5.75 \log_{10} \left(\frac{y}{R}\right) + 3.75$$

 $u_{mean}(\;\overline{u}) = 0.82 \; to \; 0.85 \; u_{max} \; for \; turbulent \; flow \; in \; pipe \label{eq:umean}$

$$\frac{u_{\text{max}} - \overline{u}}{v^*} = 3.75$$

$$v^* = \sqrt{\frac{\tau_o}{\rho}} = \overline{u} \sqrt{\frac{F}{8}}$$

 $\overline{\mathbf{u}} = \text{average velocity}$

 $v^* = Shear velocity$

F = Friction factor

Chapter 8: DIMENSIONAL ANALYSIS

Dynamic Similarity:

$$\frac{F_{\text{inertia}})_{\text{m}}}{F_{\text{inertia}})_{\text{P}}} = \frac{F_{\text{viscous}})_{\text{m}}}{F_{\text{viscous}})_{\text{P}}}$$

$$\left(\frac{F_i}{F_v}\right)_m = \left(\frac{F_i}{F_v}\right)_P$$

$$Re)_m = Re)_P$$

Reynolds number for model and proto-

type shall be same.

$$F_{inertia} = \rho L^2 V^2$$

$$F_{\text{viscous}} = \mu VL$$
,

where $\mu = Viscosity$

Chapter 9: FLOW OVER SUB-MERGED BODIES

$$P_1 \longrightarrow P_2$$

$$(f_o)_{total} = \underbrace{f_{skin friction}}_{due to viscous shear force} + \underbrace{f_{pressure}}_{due to pressure}$$

$$F_{D_{T}} = \int_{A} T_{o} dA \cos \theta + \int_{A} p dA \sin \theta$$

$$F_{D_{T}} = \frac{1}{2} C_{D} \rho A U_{\infty}^{2}$$

 C_D = Coefficient of drag

A = Projected area of body in plane \perp^r to

flow

$$A = \frac{\pi}{4} D^2$$
 for sphere

Case 1:

Drag force on rotating cylinder

$$F_L = \rho V L \Gamma$$

 Γ = Circulation

$$C_{L} = \frac{\Gamma}{RV}$$

 $C_L = coefficient of lift$

Case 2: Center

Drag force on sphere

$$F_D = 3\pi\mu DU_{\infty}$$

$$C_D = \frac{24}{Re}$$

if Re < 0.2

Re = Reynolds number

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

Visit us www.iitiansgateclasses.com