

GATE -ME FLUID MACHINERY

Table Of Content

Impact Of Jets	01
Turbines	02
Pump	05

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

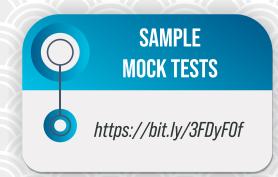
OUR COURSES

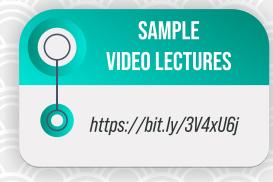
Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests


Module Wise Tests



Complete Syllabus Tests

More About IGC

Follow us on:

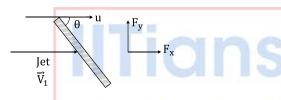
For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Fluid Machinery

Chapter 1: IMPACT OF JETS


Force = Rate of change of linear momentum.

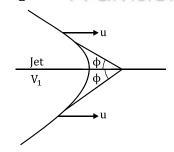
Torque = rate of change of angular momentum.

$$F_{jet} = -F_{plate} = \dot{m}(\vec{V}_1 - \vec{V}_2)$$

 $\dot{m} = Mass flow rate striking the plate.$

Flat Plate:

$$F_{x} = \rho a(V_{1} - u)^{2} \sin^{2} \theta$$


$$F_{v} = \rho a(V_{1} - u)^{2} \sin \theta \cos \theta$$

Work done (WD) = $\rho A(V_1 - u)^2 \sin^2 \theta \cdot u$

a = area of j<mark>et</mark>

Symmetric Curved Plate; Jet

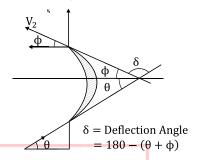
Striking at Centre: division of PhIE

$$F_x = \rho a(V_1 - u)^2 (1 + \cos \phi)$$

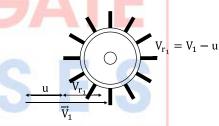
$$F_v = 0$$

$$W_D = F_x \cdot u$$

Fixed Curved Plate (Unsymmetrical) Jet Enters tangentially:


$$\dot{m} = \rho a V_1$$

$$F_X = \rho a V_1^2 (\cos \theta + \cos \phi)$$


$$F_{v} = \rho a V_{1}^{2} (\sin \theta - \sin \phi)$$

 θ = Vane angle at inlet

 ϕ = Vane angle at outlet

Flat Plate Mounted on Wheel:

$pv | T\dot{m} = \rho a V_1 - \rho a D UATES$

V_r, For single vane

V₁ for multi vane

$$u_1 = u_2$$

$$F_x = \rho a V_1 (V r_1) \& F_y = 0$$

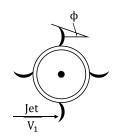
$$WD = \rho a V_1 (Vr_1) u$$

$$\eta = \frac{\rho a V_1 (V_1 - u) \cdot u}{\frac{1}{2} \; \dot{m} V_1^2} \label{eq:eta}$$

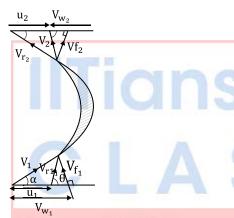
$$\eta_{\text{max}} = 50\% \text{ at } u = \frac{V_1}{2}$$

Curved Plate Mounted on Wheel & jet striking at Center:

$$\dot{m} = \rho a V_1$$


$$F_x = \dot{m}V_{r_1} - \dot{m}(-V_{r_2}\cos\phi)$$

$$F_{x} = \dot{m}(V_{1} - u)(1 + \cos \phi)$$


GATE-ME-QUICK REVISION FORMULA SHEET

 $V_{r_2} = V_{r_1}$ (If no friction)

$$\eta_{max} = \frac{1 + \cos \varphi}{2} \ \text{ at } u = \frac{V_1}{2}$$

Curved Plate Mounted on Wheel, Jet Enters tangentially:

 $\vec{V} = \vec{V}_r + \vec{u}$ Exclusive GATE COA

 $V^2 = V_w^2 + V_f^2$ A division of PhIE Learning

(Runner Power)

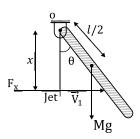
$$RP = \dot{m} (V_{w_1} u_1 + V_{w_2} u_2)$$

It is General Diagram for turbine:

$$u_1 = \frac{\pi D_1 N}{60}, \qquad u_2 = \frac{\pi D_2 N}{60}$$

 $V_{r_2}, V_{r_1} \rightarrow \text{Relative velocities}$

 V_{w_1} and $V_{w_2} \rightarrow Whirl velocities$


i.e., Tangential component of V₁ & V₂

 V_{f_1} and $V_{f_2} \rightarrow Flow velocity$

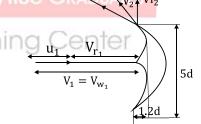
 $\alpha, \beta \rightarrow$ angle made by absolute velocities at Inlet and exit.

 $\theta, \phi \rightarrow V$ ane angle at inlet and Exit

Vertically hinged Plate

$$\sum M_0 = 0$$

$$F_{x}(x) = Mg\left(\frac{l}{2}\right)\sin\theta$$


$$\rho a V_1^2(x) = W\left(\frac{l}{2}\right) \sin \theta$$

$$\sin \theta = \frac{2 \times \rho A V_1^2(x)}{Wl}$$

Chapter 2: TURBINES

1st Type Tangential Flow:

Impulse Turbine (Pelton Turbine)

$$u_1 = u_2 = \frac{\pi DN}{60}$$

$$V_{r_1} = V_{r_2}$$

$$H_{net} = H_G - h_f$$

$$H_G = Gross head$$

 $h_f = \text{Head loss due to frition}$

Depth vane = 1.2 d

Width of vane = 5d

Jet ratio (m) =
$$\frac{Diameter of wheel}{Jet diameter}$$
$$= \frac{D}{d}$$

No. of Vanes
$$=\frac{m}{2} + 15$$

Water Power (WP) = ρgQH_{net}

Runner power (RP) =
$$\dot{m}(V_{w_1} \pm$$

$$V_{w_2}$$
) $u = F_x \cdot u$

 ϕ = Blade outlet angle /side clearance angle.

$$\eta_{\rm nozzle} = \frac{KE}{\rho g Q H_{\rm net}} = \frac{\frac{1}{2} \rho Q V_1^2}{\rho g Q H_{\rm net}}$$

If no losses in Nozzle

$$V_1 = \sqrt{2g H_{net}}$$

If loss in Nozzle

$$V_1 = C_V \sqrt{2gH_{net}}$$

$$\begin{split} \eta_{Hydraulic} &= \frac{\text{Runner power (RP)}}{\text{Water power (WP)}} \\ &= \frac{\left(V_{w_1} \pm V_{w_2}\right) \text{u } \dot{\text{m}}}{\dot{\text{m}} \text{g} H_{net}} \end{split}$$

$$Now, H_{net} \neq \frac{V_1^2}{2\text{g}} + \frac{V_$$

$$\eta_{\rm vol} = \frac{Q - \Delta Q}{O}$$

$$\eta_{Blade/wheel} = \frac{Runner\ power\ (RP)}{\frac{1}{2}\ \dot{m}V_1^2}$$

$$\eta_{Mechanical} = \frac{Shaft Power (SP)}{Runner power (RP)}$$

 $\eta_{overall} = \eta_{Hyd} \times \eta_{mech} \times \eta_{volumetric}$

When η_{nozzle} is given:

Then $(\eta_{max})_{Hydraulic}$

$$= \Big(\!\frac{1 + K\cos\varphi}{2}\!\Big) \eta_{\text{nozzle}}$$

Where

$$K = \frac{V_{r_2}}{V_{r_1}}$$

K = Blade friction coefficient

When $\eta_{\text{nozzle}} = 100\%$

$$(\eta_{max})_{Hydraulic} = \frac{1 + K\cos\varphi}{2} \text{ at } u = \frac{V_1}{2}$$

 δ = angle of deflection = $180 - \phi$

Note:

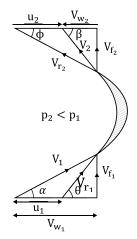
Above analysis is for single nozzle for multi nozzle.

$$n = No. of Jet$$

$$(Power)_{Total} = n \times (Power)_{1iet}$$

Speed ratio =
$$(k_u) = \frac{u_1}{\sqrt{2gH_{net}}}$$

$$f = \frac{PN}{120}$$


Where P = No. of poles

$$N = rpm, f - Freguency (Hz)$$

2nd Type Impulse Reaction Turbine:

Now,
$$H_{\text{net}} \neq \frac{V_1^2}{2g}$$

$$H_{net} = \frac{V_1^2}{2g} + \frac{p_1}{\rho g} \qquad \qquad H_{net} = H$$

$$V_{r_2} >> V_{r_1} \quad u_1 \neq u_2$$

GATE-ME-QUICK REVISION FORMULA SHEET

 α = Guide Blade angle or absolute velocity angle at inlet.

$$A_{f_1} = \pi d_1 b_1$$

$$A_{f_2} = \pi d_2 d_2$$

$$Q = A_{f_1} V_{f_1} = A_{f_2} V_{f_2}$$

$$Q = (\pi d - nt)b V_f = k\pi dbV_f$$

k = Coefficient of Vane thickness.

Speed ratio =
$$\frac{u_1}{\sqrt{2gH}}$$

Flow Ratio =
$$\frac{V_{f_1}}{\sqrt{2gH}}$$

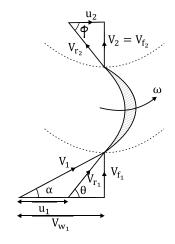
Degree of Reaction (DOR):

DOR

Contribution of pressure head in

Total contibution of KE and

Pressure energy head into $\left(\frac{RP}{mg}\right)$


$$DOR = 1 - \frac{V_1^2 - V_2^2}{2g\left(\frac{R.P}{\dot{m}g}\right)}$$

Special type of Impulse Reaction A division of PhIE

Turbine.

Francis Turbine (Radial flow Turbine)

$$V_{w_2} = 0; \qquad \beta = 90^{\circ}$$

Most Approximate Equation:

$$H = \frac{V_2^2}{2g} + \frac{RP}{\dot{m}g}$$

Above equation used

When question gets stacked

When no friction

When
$$V_{w_2} = 0$$

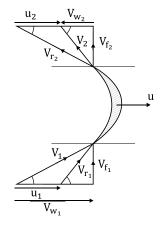
Water Power (WP) = ρ gQH

$$RP = \rho Q \big(V_{w_1} u_1 + V_{w_2} u_2 \big) \quad V_{w_2} = 0$$

$$= \rho Q(V_{w_1}u_1)$$

$$\eta_{Hydraulic} = \frac{RP}{WP} = \frac{V_{w_1}u_1}{gH}$$

Flow ratio(
$$K_f$$
) = $\frac{V_{f_1}}{\sqrt{2gH}}$


Width ratio =
$$\frac{b_1}{d_1}$$

Diameter ratio =
$$\frac{d_1}{d_2}$$

Speed ratio(
$$K_u$$
) = $\frac{u_1}{\sqrt{2gH}}$

Axial Flow Turbine:

Propeller (Fixed vanes) or Kaplan Turbine (Adjustable vane)

$$\mathbf{u}_1 = \mathbf{u}_2 = \frac{\pi DN}{60}$$

D = Taken where Analysis its done.

Area of flow
$$(A_f) = \frac{\pi}{4} \big(D_o^2 - D_h^2\big)$$

$$\left. \begin{array}{l} {{A_{{f_1}}} = {A_{{f_2}}}}\\ {{V_{{f_1}}} = {V_{{f_2}}}} \end{array} \right\}Always$$

(Rest Calculations are same as Francis)

Draft Tube (DT):

 $\eta_{Draft\,Tube}$

$$= \frac{\text{Change in kinetic energy}}{\text{Head in DT}}$$

$$= \frac{\text{head in DT}}{\text{Total kinetic energy head at}}$$

$$= \text{entry of DT}$$

Specific Speed of Turbine (N_s) :

$$N_s = \frac{N\sqrt{P}}{H^{5/4}} \left(\begin{array}{c} Valid \ for \ single \\ stage \ turbine \end{array} \right)$$

Where N in rpm, P in kW, H in meter

Dimensionless Specific Speed of

Turbine:

$$K_{S_T} = \frac{N\sqrt{P}}{\rho^{\frac{1}{2}}(gH)^{5/4}}$$

Where N in rps, P in Watt, H in meter

Specific Speed	Turbine	Н	Q
0-60	Pelton	High	Low
60-300	Francis	Medium	Medium
300-600	Propeller	Low	High
600-	Kaplan	Low	High
1000	парши	LOW	****811

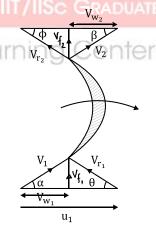
Model-Prototype Relations (Valid for both turbine and Pump)

$$\frac{P}{D^5N^3} = K, \qquad \frac{H}{D^2N^2} = k,$$

$$\frac{Q}{D^3N} = k$$

Unit Quantities (Used for a single Turbine):

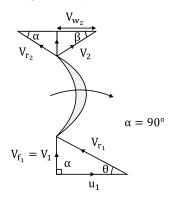
$$N_u = \frac{N}{\sqrt{H}}, P_u = \frac{P}{H^{\frac{3}{2}}}$$

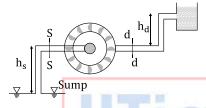

$$Q_{\rm u} = \frac{Q}{\sqrt{H}}$$

Chapter 3: PUMPS

 $\Delta P \propto \omega^2$

Centrifugal pump works on principle of forced Vortex.


General Pump:



GATE-ME-QUICK REVISION FORMULA SHEET

Centrifugal Pump:

$$V_{w_1} = 0$$

 $H_m = Manometric head (Head)$ Required to pump the water)

$$IP = \rho Q (V_{w_2} u_2 - V_{w_2} u_1^*)$$

 $IP = \rho Q(V_{w_2}u_2) \rightarrow For Centrifugal$

pump

 $\eta_{\text{manometric}} = \frac{\text{Water Power (WP)}}{\text{Impeller Power (IP)}}$

$$WP = \rho gQH_m$$

$$\begin{split} WP &= \rho g Q H_m \\ Q &= A_{f_1} V_{f_1} = A_{f_2} V_{f_2} \quad A_f = \pi db \end{split}$$

$$\eta_{\rm vol} = \frac{Q}{Q + \Delta Q}$$

$$\eta_{mech} = \frac{IP}{Shaft \, Power \, (SP)}$$

IP = SP - Mechanical Losses

$$\frac{IP}{\dot{m}g} = \frac{V_{w_2}u_2 - V_{w_1}u_1}{g} = H_e$$

 H_e = Euler head

Speed ratio (
$$Ku_2$$
) = $\frac{u_2}{\sqrt{2gH_m}}$

Flow ratio (K_f) =
$$\frac{V_{f_2}}{\sqrt{2gH_m}}$$

Diameter ratio =
$$\frac{d_1}{d_2}$$

Specific Speed of Pump

$$(N_S) = \frac{N\sqrt{Q}}{H_m^{3/4}}$$

Where N is in rpm, Q is in m^3 /sec, H_m in meter.

General Equation:

$$\frac{IP}{\dot{m}g} = \frac{V_2^2 - V_1^2}{2g} + \frac{u_2^2 - u_1^2}{2g} + \frac{{V_r}_1^2 - {V_r}_2^2}{2g}$$

At starting, V_1 , V_2 , V_{r_1} , $V_{r_2} = 0$

$$\frac{IP}{mg} = \frac{u_2^2 - u_1^2}{2g} \ge H_m$$

$$\frac{\omega^2 (r_2^2 - r_1^2)}{2g} \ge H_m$$

Where $\omega = Minimum$ speed of pump to start.

Static Head
$$(H_s) = h_s + h_d$$

 $h_s = Suction head$

 $h_d = Delivery head$

If there is no loss in pump

 $(\eta_{manometric} = 100\%)$

$$H_m = \frac{IP}{\dot{m}g} = \frac{V_{w_2}u_2}{g}$$

If loss in pump is given

$$H_{m} = \frac{V_{w_{2}}u_{2}}{g} - \begin{pmatrix} Loss in impeller + \\ loss in casing \end{pmatrix}$$

$$H_{\rm m} = H_{\rm s} + H_{\rm f} + \frac{V_{\rm d}^2}{2g}$$

NPSH =
$$\left(\frac{p_1}{\rho g} + \frac{V_1^2}{2g} - \frac{p_v}{\rho g}\right)$$
, $h_v = \frac{p_v}{\rho g}$

$$NPSH = \frac{p_{atm}}{\rho g} - h_s - h_f - h_v$$

NPSH= Net positive suction head

$$\text{Cavitation factor } (\sigma) = \underbrace{\frac{\text{NPSH}}{\text{H}_m}}_{\text{Pump}} = \underbrace{\frac{\text{NPSH}}{\text{H}}}_{\text{Turbine}}$$

Note:

$$\sigma = \frac{\text{NPSH}}{H_m} \geq \sigma_c \text{ for no cavitation}$$

where σ_c = Critical cavitation factor

Dimensionless Specific speed of pump.

$$K_{s_p} = \frac{N\sqrt{Q}}{(gH)^{3/4}}$$

Characteristics Curve:

Multiple Pump: CLUSIVE GATE COACHING BY IIT/IISC GRADUATES

A division of PhIE Learning Center

For Series

$$H_{m} = nH$$

$$Q = Q_1 = Q_2$$

For Parallel, $Q = Q_1 + Q_2 + Q_3 + \cdots$

$$H_m = H_1 = H_2 = H_3 \dots$$

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

Visit us www.iitiansgateclasses.com