

Table Of Content

Flight Stability & Control	05
Longitudinal Stability	05
Stick Free Longitudinal Static Stability	07
Dynamic Longitudinal Stability	08
Directional Stability	09
Contribution of Wing	10
Lateral Stability	13

OUR ACHIEVERS

GATE-2023 AE

SRIRAM R
SSN COLLEGE CHENNAI
AIR - 2

Akriti PEC, Chandigarh AIR - 6

SHREYASHI SARKAR IIEST, SHIBPUR AIR - 8

YOKESH K MIT, CHENNAI AIR - 11

HRITHIK S PATIL RVCE, BANGALORE AIR - 14

And Many More

GATE-2022 AE

SUBHROJYOTI BISWAS IIEST, SHIBPUR AIR - 4

SANJAY. S AMRITA UNIV, COIMBATORE AIR - 7

AKILESH . G HITS, CHENNAI AIR - 7

D. MANOJ KUMAR AMRITA UNIV, COIMBATORE AIR - 10

DIPAYAN PARBAT IIEST, SHIBPUR AIR - 14

And Many More

GATE-2021 AE

NILADRI PAHARI IIEST, SHIBPUR AIR - 1

VISHAL .M MIT, CHENNAI AIR - 2

SHREYAN .C IIEST, SHIBPUR AIR - 3

VEDANT GUPTA RTU, KOTA AIR - 5

SNEHASIS .C IIEST, SHIBPUR AIR - 8

And Many More

OUR PSU JOB ACHIEVERS DRDO & ADA Scientist B

Job Position for Recruitment (2022-23) Based on GATE AE score

Mr. Abhilash K (Amrita Univ Coimbatore)

Ms. Ajitha Nishma V (IIST Trivendrum)

Mr. Dheeraj Sappa (IIEST Shibpur)

Ms. F Jahangir (MIT Chennai)

Mr. Goutham (KCG College Chennai)

Mr. M Kumar (MVJ College Bangalore)

Mr. Mohit Kudal (RTU Kota)

Mr. Niladhari Pahari (IIEST Shibpur)

Mr. Nitesh Singh (Sandip Univ Nashik)

Mr. Ramanathan A (Amrita Univ Coimbatore)

Ms. Shruti S Rajpara (IIEST Shibpur)

HAL DT ENGINEER

Job Position for Recruitment (2023)

Mr. Anantha Krishan A.G (Amrita Univ Coimbatore)

Mr. S.S Sanjay (Amrita Univ Coimbatore)

Mr. Shashi Kanth M (Sastra Univ Taniore)

Mr. Vagicharla Dinesh (Lovely Professional Univ Panjab)

FATHIMA J (MIT, CHENNAI) HAL DT ENGINEER 2022

SADSIVUNI TARUN (SASTRA TANJORE) HAL DT ENGINEER 2021

MOHAN KUMAR .H (MVJCE, BANGALORE) HAL DT ENGINEER 2022

VIGNESHA .M (MIT, CHENNAI) MRS E-II CRL BEL

ARATHY ANILKUMAR NAIR (AMRITA UNIV, COIMBATORE) HAL DT ENGINEER 2021

RAM GOPAL SONI (GVIET, PUNJAB) CEMILAC LAB, DRDO

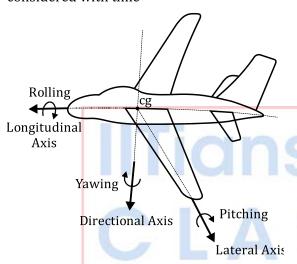
AIRCRAFT STABILITY

-- FLIGHT STABILITY & CONTROL

Stability:

Static Stability: System considered without time.

Dynamic Stability: System response is considered with time



Sign Notation:

For pitching: EXCLUSIVE GATE COACHIN

Nose up (+ve)

Rolling:

Right wing (Starboard) down = (+ve)

Right wing (Starboard) up = (-ve)

Left wing (Port wing) down = (-ve)

Left wing (Port wing) up = (+ve)

Yawing:

Turning towards right wing = (+ve)

Turning towards left wing = (-ve)

LONGITUDINAL STABILITY

Criteria for Longitudinal Stability:

For Statically stable aircraft, trimmed at positive angle of attack

1.
$$C_{m_0} = (+ve) \rightarrow C_{m_0} > 0$$

2.
$$C_{m_{\alpha}} < 0$$

For trimmed aircraft $C_{m_0} = 0$

For neutrally stable aircraft $C_{m_{\alpha}} = 0$

For statically unstable aircraft $C_{m_{\alpha}} > 0\,$

1. Wing Contribution:

$$C_{m_{cg}} = C_{m_{ac}} + C_{L_{w}}(h - h_{ac}) \dots 1$$

$$C_{L_w} = C_{L_o} + a_w \alpha_w$$

Where;

 C_{m_0} = Independent on α

$C_{m_{\alpha}} = \frac{dC_{m}}{d\alpha} \Rightarrow Dependent on \alpha$

Nose up (+ve)
Nose down – (-ve)
$$C_{m_0} = C_{m_{ac}} + C_{L_0}(h - h_{ac})$$

$$\frac{\partial C_{\rm m}}{\partial \alpha} = a_{\rm w}(h - h_{\rm ac}) > 0$$

Wing alone configuration is unstable because $\frac{\partial C_m}{\partial \alpha} > 0$.

For wing alone configuration to be stable, use airfoil with negative camber or reflexed trailing edge.

2. Contribution of Horizontal Tail:

$$\alpha_{t} = (\alpha_{w} - i_{w} - \epsilon) + i_{t}$$

$$\begin{cases} \eta_t = \frac{\frac{1}{2}\rho V_t^2}{\frac{1}{2}\rho V_{\infty}^2} = \frac{q_t}{q_{\infty}} \text{ Tail efficiency factor} \\ V_H = \frac{l_t S_t}{S_w C_w} - \text{Tail volume coefficeint} \end{cases}$$

$$\left(C_{m_{cg}}\right)_{t} = -\eta_{t}V_{H}C_{L_{t}}$$

$$C_{L_t} = a_t \alpha_t$$

$$C_{m_{cg}} = -\eta_t V_H a_t (\alpha_w - i_w - \epsilon) + i_t$$

$$\left\{ \epsilon = \epsilon_0 + \frac{\partial \epsilon}{\partial \alpha} \alpha \right\}$$

$$\begin{split} C_{m_{cg}} &= -\eta_t C_H a_t \, \left(\alpha_w - i_w \right. \\ &\left. - \left(\epsilon_0 + \frac{\partial \epsilon}{\partial \alpha} \alpha \right) \right. \end{split}$$

$$\begin{cases} \text{Empirical relation for } \epsilon, \epsilon_{o} = \frac{2C_{Lw}}{\pi eAR} \\ \frac{\partial \epsilon}{\partial \alpha} = \frac{2a_{w}}{\pi eAR} \end{cases}$$

Rewriting (2)

$$C_{m_{cg}} = \underbrace{\eta_t V_H a_t (i_t + \epsilon_o)}_{\text{Independent of } \alpha}$$

$$\left(C_{m_{cg}}\right)_{t} \Rightarrow C_{m_{o}} > 0 \text{ and } C_{m_{\alpha}} < 0$$

(Satisfied the criteria for longitudinal stability)

Tail alone configuration is statically stable configuration:

$$\begin{split} \left(C_{m_{cg}}\right)_{w,t} &= C_{m_{ac}} + C_{L_w}(h - h_{ac}) - \eta_t V_H C_{L_t} \\ &+ C_{m_{fuse lage}} \end{split}$$

Or

$$(C_{m_{cg}})_{w,t} = C_{m_{ac}} + a_w \alpha_w (h - h_{ac})$$

$$+ C_{L_o} (h - h_{ac})$$

$$- \eta_t V_H (\alpha_w - i_w - \varepsilon + i_t)$$

$$+ C_{m_{fuselage}} \dots 3$$

$$\begin{split} C_{m_o} &= \left(C_{m_{ac}}\right) + C_{L_o}(h - h_{ac}) + \eta_t V_H a_t (i_t + \epsilon_o) \\ C_{m_\alpha} &= a_W (h - h_{ac}) - \eta_t V_H \left(1 - \frac{\partial \epsilon}{\partial \alpha}\right) a_t \end{split} \right\} ... \textcircled{4} \end{split}$$

Neutral Point:

A point where $C_{m_{cg}}$ constant for airplane

$$\left(\frac{\partial C_m}{\partial \alpha} \text{ or } \frac{\partial C_m}{\partial C_L} = 0\right)$$

Here $h = h_n$ (Neutral point) equation (3)

$$\frac{\partial C_{m}}{\partial \alpha} = a_{w} \left[(h - h_{ac}) - \eta_{t} V_{H} \frac{a_{t}}{a_{w}} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \right]$$

$$0 = a_{w} \left[(h_{n} - h_{ac}) - \eta_{t} V_{H} \frac{a_{t}}{a_{w}} \left(1 - \frac{\partial \epsilon}{\partial \alpha} \right) \right]$$

$$h_{n} = h_{ac} + \eta_{t} V_{H} \frac{a_{t}}{a_{w}} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) - \frac{1}{a_{w}} \frac{\partial C_{mfuselage}}{\partial \alpha}$$

Neutral point location

$$\frac{\partial C_{\rm m}}{\partial \alpha} = a_{\rm w} (h - h_{\rm n})$$

$$\{(h_n - h) - Static margin\}$$

$$\begin{cases} (h_n - h) - \text{Static margin} \\ \frac{\partial C_m}{\partial \alpha} = -a_w(h_n - h) \end{cases}$$

{Neutral point should behind the CG location}

$$\frac{\partial C_m}{\partial \alpha} = -a_w \times \text{static margin}$$

{For a/c to have static longitudinal stability}

- 1. $h_n > h$ (Stable configuration)
- 2. $h_n = h$ (Neutral configuration)
- 3. $h_n < h$ (Unstable configuration)

Elevator Deflection:

$$C_{L_t} = \frac{\partial C_{L_t}}{\partial \alpha_t} \; \alpha_t + \frac{\partial C_{L_t}}{\partial \delta_e} \, \delta_e$$

$$\left\{ \! \frac{\partial C_{L_t}}{\partial \delta_e} \! - \text{Elevator control effectiveness} \! \right\}$$

$$\frac{\partial C_{L_t}}{\partial \delta_e} = \alpha_t a_t + \frac{\partial C_{L_t}}{\partial \delta_e} \ \delta_e$$

$$C_{m_{cg}} = C_{m_{cg_w}} + C_{m_{cg_+}}$$

$$C_{m_{cg}} = C_{m_{ac}} + C_{L_w}(h - h_{ac})$$

$$-\,\eta_t V_H \left(a_t \alpha_t + \frac{\partial C_{L_t}}{\partial \delta_e} \delta_e \right)$$

$$\frac{\partial c_m}{\partial \delta_e} = -\eta_t V_H \frac{\partial c_{L_t}}{\partial \delta_e} \text{--- Elevator power}$$

$$\Delta C_{m_{cg}} = - \eta_{t} V_{H} \frac{\partial C_{L_{t}}}{\partial \delta_{e}} \delta_{e}$$

Calculate the elevator angle to trim

$$C_{m_{cg}} = C_{m_o} + \frac{\partial C_m}{\partial \alpha} \alpha$$

$$C_{m_{cg}} = C_{m_o} + \frac{\partial C_m}{\partial \alpha} + \Delta C_{m_{cg}}$$

$$C_{m_{cg}} = C_{m_o} + \frac{\partial C_m}{\partial \alpha} \alpha - \eta_t V_H \frac{\partial C_{L_t}}{\partial \delta_e} \delta_e$$

To trim the a/c at $\alpha = \alpha_n (\text{new } \alpha)$, $C_{m_{cg}} = 0$

$$\delta_{e_{\mathrm{trim}}} = \frac{C_{m_o} + \left(\frac{\partial C_m}{\alpha}\right) \alpha_n}{\eta_t V_H \left(\frac{\partial C_{L_t}}{\partial \delta_e}\right)}$$

Elevator Hinge Moment:

 C_{h_e} = Elevator hinge moment coefficient

$$C_{h_e} = f(\alpha_t, \delta_e)$$

$$C_{h_e} = \underbrace{\frac{\partial C_{h_e}}{\partial \alpha_t}}_{\substack{Floating \\ Tendency}} \alpha_t + \underbrace{\frac{\partial C_{h_e}}{\partial \delta_e}}_{\substack{Restoring \\ Tendency}} \delta_e$$

STICK FREE LONGITUDINAL STATIC STABILITY

If elevator is free to oscillate from position

 $\delta_{e_{free}}$ can be calculate $H_e=0$

$$\delta_{e_{\mathrm{free}}} = \left(-\frac{\left(\frac{\partial C_{h_e}}{\partial \alpha_t}\right) \alpha_t}{\left(\frac{\partial C_{h_e}}{\partial \delta_e}\right)} \right)$$

Considering tail lift coefficient

$$C_{L_t} = a_t \alpha_t + \left(\frac{\partial C_{L_t}}{\partial \delta_e} \delta_e\right) \quad \{\delta_e = \delta_{free}\}$$

$$C_{L_{t}}' = a_{t}\alpha_{t} + \left(\frac{\partial C_{L_{t}}}{\partial \delta_{e}} - \frac{\left(\frac{\partial C_{h_{e}}}{\partial \alpha_{t}}\right)\alpha_{t}}{\left(\frac{\partial C_{h_{e}}}{\partial \delta_{e}}\right)}\right)$$

$$C_{L_{t}}' = a_{t}\alpha_{t} - \left(\frac{\partial C_{L_{t}}}{\partial \delta_{e}} \left(\frac{\frac{\partial C_{h_{e}}}{\partial \alpha_{t}}}{\frac{\partial C_{h_{e}}}{\partial \delta_{e}}}\right) \alpha_{t}\right)$$

 $C_{I..} = a_t \alpha_t F$ (F= Free elevator factor)

$$F = 1 - \frac{1}{a_t} \left(\frac{\partial C_{L_t}}{\partial \delta_e} \right) \left(\frac{\partial C_{h_e}}{\partial C_{h_c}} / \frac{\partial \alpha_t}{\partial \delta_e} \right)$$

(F is always less than 1)

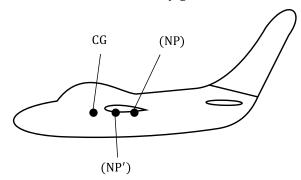
$$C_{m_{\alpha}} = a_{w}(h - h_{ac}) - F\eta_{t}V_{H}a_{t}\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)$$

$$\delta_{e_{\text{trim}}} = \frac{C_{m_o} + \left(\frac{\partial C_m}{\alpha}\right) \alpha_n}{\eta_t V_H \left(\frac{\partial C_{L_t}}{\partial \delta_c}\right)}$$

$$C_{m_\alpha} = a_w \left[(h - h_{ac}) - F \eta_t V_H \frac{a_t}{a_w} \left(1 - \frac{\partial \epsilon}{\partial \alpha}\right) \right]$$

$$h'_{n} = h_{ac} + F\eta_{t}V_{H}\frac{a_{t}}{a_{w}}\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)$$

 $h_n' < h_n$ because factor F is multifield shift forward and stability gets reduced.



Corresponding C_{m_o}

$$C_{m_o} = C_{m_{ac}} + C_{L_o}(h - h_{ac}) + F \eta_t V_H a_t (i_t + \epsilon_o)$$

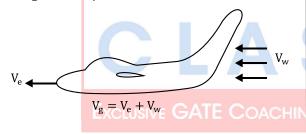
DYNAMIC LONGITUDINAL STABILITY

1. Short Period Oscillation:

Angle of Attack (α) is changed and Velocity kept constant, pitch attitude constant, heavily damped motion

2. Long Period Oscillation: (Phugoid Mode)

AOA kept constant and Velocity is increased or decreased pitch attitude varies, lightly damped motion $(V_g - gust\ wind)$



Energy transfer takes place from PE to KE it lose or gain height.

$$\Delta PE = mgh \ kE = \frac{1}{2} \ mV^2$$
 (before wind)

Here the frequency is large time period is less

$$\omega_n = 2\pi f_n \Rightarrow f_n = \frac{\omega_n}{2\pi} \quad T = \frac{1}{f_n}$$

$$\lambda_{1,2} = -\xi \omega_n \pm i \sqrt{1-\xi^2} \; \omega_n$$

where ξ = damping ratio;

$$\omega_n$$
 = Natural frequency

Amplitude
$$\delta = \frac{1}{n} \ln \left(\frac{x_1}{x_{n+1}} \right) = \frac{2\pi \xi}{\sqrt{1 - \xi^2}}$$

 $\delta = Logarithmic decrement$

 $\lambda_{1,2} = -p \pm iq$ complex pair with negative real part.

After Wind Gust:

$$\Delta kE = \frac{1}{2} m (V + V_w)^2 - \frac{1}{2} mV^2$$

$$\Delta kE = \frac{1}{2} m (V^2 + V_w^2 + 2VV_W) - \frac{1}{2} mV^2$$

$$\Delta kE = \frac{1}{2} (mV_w^2) + (mVV_w)$$

The aircraft velocity V_{∞} is greater than wind velocity.

$$\left\{ \left(\frac{1}{2}mV_w^2\right) \simeq 0 \right\}$$
 Neglected

$$V >> V_W \Delta PE = \Delta KE$$

$$mgh = mVV_W$$

$$gh = VV_w$$

Before wind,
$$L = W = \frac{1}{2}\rho V^2 SC_L$$

After wind,
$$L = \frac{1}{2} \rho (V + V_w)^2 SC_L$$

$$\frac{L}{W} = \frac{\frac{1}{2} \rho (V + V_w)^2 SC_L}{13 \frac{1}{2} \rho V^2 SC_L} = \frac{(V + V_w)^2}{V^2}$$

$$L = C \frac{L}{W} = \frac{V^2 + V_w^2 + 2VV_w}{V^2}$$

(Vw is very small neglected)

$$\frac{L}{W} = 1 + \frac{2VV_w}{V^2} = \left(1 + \frac{2V_w}{V}\right)$$

(L - W)net change in lift

$$L = W \left(1 + \frac{2V_w}{V} \right)$$

$$L = W + \frac{2V_w}{V}W \Rightarrow \left(L - W = \frac{2V_w}{V}W\right)$$

$$\omega_n = \frac{\sqrt{2}g}{V}$$

$$f_n = \frac{g}{\sqrt{2}\pi V}$$

$$T = \frac{\sqrt{2}\pi V}{g}$$

For Dynamic Longitudinal Stability

The characteristic equation given as

$$A\lambda^4 + B\lambda^3 + C\lambda^2 + D\lambda + E = 0$$

To check whether it is the characteristic equation for Longitudinal mode

- 1. All coefficients A, B, C, D and E are positive
- 2. B and C > D and E
- 3. A is almost equal to 1

Routh's Criteria:

$$R = BCD - D^2A - B^2E$$

Case 1: R > 0 the aircraft is stable

$$(-p_1 \pm iq)$$
 and $(-p_2 \pm iq)$

One of the complex pair represents (phugoid mode) and other complex pair represents the short period oscillation.

Case 2: R = 0 then aircraft is dynamically neutral

Case 3: R < 0 then aircraft is dynamically unstable-livision of PhIE Learning Center

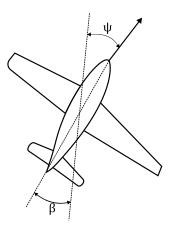
Case 4: If E = 0 then one of the λ value is zero which shows that mode is dynamically unstable.

> If other mode is negative then it shows pure convergence.

> If other mode is positive then it shows pure divergence.

Case 5: If any coefficient in the characteristic's equation negative then mode will give pure divergence or dynamically unstable condition.

DIRECTIONAL STABILITY



 β = Sideslip Angle

 $\psi = Yawing Angle$

N = Yawing Moment

$$\beta = -\psi$$

Criteria for Yaw stability

$$\frac{\partial N}{\partial \psi} < 0 \ \frac{\partial N}{\partial \beta} > 0$$

$$C_{N} = \frac{N}{\frac{1}{2} \rho V^{2}Sb}$$

$$\frac{\partial C_N}{\partial \psi} < 0 \text{ and } \frac{\partial C_N}{\partial \beta} > 0$$

Case 1: If the yawing moment trying to restore the original equilibrium position i.e., zero yaw condition then airplane statically is directionally stable.

$$\frac{\partial C_N}{\partial \psi} < 0 \; (\text{or}) \; \frac{\partial C_N}{\partial \beta} > 0 \; (\text{stable})$$

Case 2: If the yawing moment tends to take the airplane further away from equilibrium position, then the airplane is statically directionally unstable.

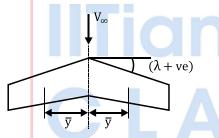
$$\frac{\partial N}{\partial \psi} > 0$$
 (or) $\frac{\partial N}{\partial \beta} < 0$ (stable)

Case 3: If the yawing moment created the airplane neither return back to original equilibrium position it takes away from its original equilibrium position then the airplane is statically directionally neutral.

$$\frac{\partial N}{\partial \psi} = 0 \text{ (or) } \frac{\partial N}{\partial \beta} = 0$$

CONTRIBUTION OF WING

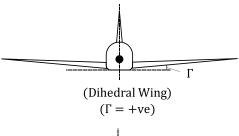
1. Sweep Back Wing:

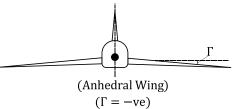


- Drag Component gives yawing moment
- Lift component gives rolling moment. $\frac{\partial C_N}{\partial \psi} = -C_D \frac{\overline{y}}{b} \frac{\sin 2\lambda}{57.3} \text{ (per radian)}$
- Sweep back angle contributes positive directional stability.
- If $\frac{\partial C_N}{\partial \psi} = 0$ where $(\lambda = 0)$ Neutrally stable. (For straight wing)
- For forward sweep

$$(\lambda = -ve) \frac{\partial C_N}{\partial \psi} > 0$$
 (Unstable).

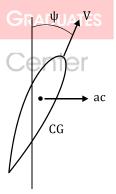
2. Dihedral Wing:





- Due to dihedral or anhedral (cathedral) wing the lift vector on each wing (Span wise) is getting tilted there by it creates minor destabilizing effect.
- Dihedral and anhedral wing results negative directional stability.

Contribution of Fuselage:



Sideways force towards starboard side is (+ve).

Sideways force acts on ac of fuselage.

• (CG) well below ac is creating yawing moment towards starboard side (+ve).

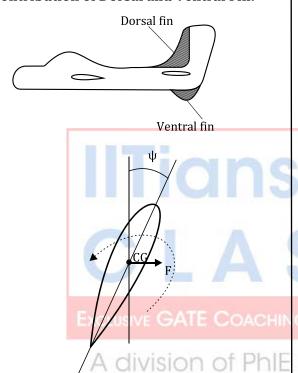
$$\frac{\partial N}{\partial \psi} = (+ve)$$

Yawing moment towards starboard is (+ve)

Yawing angle towards starboard is (+ve)

 Fuselage alone contribution unstable for directional stability.

Contribution of Dorsal and Ventral Fin:



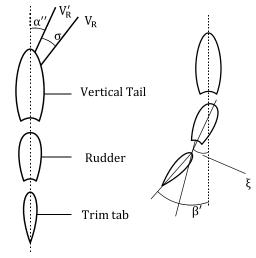
It creates yawing moment towards port side (-ve).

{ F = sideway force acts on ac of Dorsal and Ventral fin}.

$$\frac{\partial N}{\partial \psi} = \frac{-ve}{+ve} = -ve \ \frac{\partial N}{\partial \psi} < 0$$

Dorsal and Ventral fin provides positive directional stability.

Contribution of Vertical Tail:



 $\alpha'' + \sigma = \psi$

 $\alpha^{\prime\prime}=$ Effective incidence of fin

 V'_{R} = Resultant velocity of vertical tail.

 $V_R = resultant velocity of a/c.$

 σ = Sidewash angle.

 ξ = Rudder deflection angle

 β' = Trim tub deflection angle

 $l_f = Fin lift arm.$

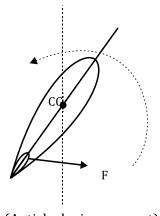
 $N_{VT} = -L'l_f$ (Net moment acting due to vertical tail)

L' = Lift due to vertical tail

(-ve) because vertical tail is behind the CG it creates a restoring moment towards port side.

$$C_{L_{\mathrm{VT}}} = a_1^\prime \alpha^{\prime\prime} + a_2^\prime \xi + a_3^\prime \beta^\prime$$

Since trim tab deflection D very small ($\beta' \simeq 0$)



(Anticlockwise moment)

$$C_{LVT} = a_1' \alpha'' + a_2' \xi$$

$$a_1' = \frac{\partial C_{LVT}}{\partial \alpha''}$$

$$a_2' = \frac{\partial C_{LVT}}{\partial \xi}$$

$$L' = \frac{1}{2} \ \rho \ (V_R')^2 \ S_{VT} \ C_{LVT}$$

Now since, $N_{VT} = -L'l_f$ $\{l_f = l_{VT}\}$

Now since.

$$N_{VT} = -L'l_f$$

$$\begin{split} &= -C_{L}' \left(\frac{1}{2} \rho(V_{R}')^{2} S_{VT}\right) l_{VT} \\ &= -(a_{1}' \alpha'' + a_{2}' \xi) \left(\frac{1}{2} \rho(V_{R}')^{2} S_{VT}\right) l_{VT} \end{split}$$

$$N_{VT}@CG = -\frac{1}{2}\rho(V_R')^2 S_{VT}l_{VT}(a_1'(\psi - \sigma) + a_2'\xi)$$

 $+ \, a_2' \xi)$ Non-Dimensional zing: $\left\{ \div \, \frac{1}{2} \rho V_R^2 S_w b_w \right\}$

$$C_{N_{VT}} = -\frac{\frac{1}{2}}{\frac{1}{2}} \frac{\rho(V_R')^2}{\rho(V_R)^2} \frac{S_{VT} l_{VT}}{S_w b_w} (a_1'(\psi - \sigma) + a_2' \xi)$$

$$C_{N_{VT}} = -\eta_{VT} \overline{V}_{VT} (a'_1 (\psi - \sigma) + a'_2 \xi)$$

$$\frac{\partial C_{N_{VT}}}{\partial \psi} = -\eta_{VT} \, \overline{V}_{VT} \, \left(a_1' \left(1 - \frac{\partial \sigma}{\partial \psi} \right) + a_2' \frac{\partial \xi}{\partial \psi} \right)$$

If rudder is fixed (Pedal fixed condition) then

$$\left(\frac{\partial \xi}{\partial \psi} = 0\right)$$

$$\frac{\partial C_{N_{VT}}}{\partial \psi} = -\eta_{VT} \overline{V}_{VT} \left(a_1' \left(1 - \frac{\partial \sigma}{\partial \psi} \right) \right)$$

$$\rightarrow \begin{pmatrix} \text{Pedal} \\ \text{fixed} \\ \text{Condition} \end{pmatrix}$$

$$\left(\frac{\partial C_N}{\partial u} < 0\right)$$

Vertical tail provides positively for directional stability (Main contributing member)

Pedal Free Directional Stability:

Rudder is free to oscillates until hinge moment tends to zero $(H_e = 0)$

$$H' = \frac{1}{2} \rho (V_R')^2 S_R C_H' \overline{C}_R$$

(When rudder is deflected hinge moment exerted).

 S_R = Surface area of rudder

 \overline{C}_R = Rudder chord

 $C_{H}^{\prime}=$ Hinge moment coefficient

$$C_{H}' = \frac{H'}{\frac{1}{2} \rho(V_{R}')^{2} S_{R} \overline{C}_{R}}$$

$$C'_{H} = b'_1 \alpha'' + b_2 \xi + b'_3 \beta'$$

 $(\beta' \simeq 0 \text{ trim tab deflection})$

$$C'_{H} = b'_{1}\alpha'' + b'_{2}\xi$$

$$b_1' = \frac{\partial C_H'}{\partial \alpha''} \quad b_2' = \frac{\partial C_H'}{\partial \xi}$$

Rudder is free to oscillate until (He) hinge moment is zero

$$C'_{H} = 0 = b_1 \alpha'' + b'_2 \xi + b'_3 \beta' (\beta' \simeq 0)$$
already

$$0 = b'_1 \alpha'' + b'_2 \xi \text{ RADUATES}$$

$$b'_1 \alpha'' \qquad b'_2 (|y| - \alpha)$$

$$\xi = -\frac{b_1' \alpha''}{b_2''} \quad \xi = -\frac{b_1' (\psi - \sigma)}{b_2'}$$

$$\frac{b\xi}{\partial\psi} = -\frac{b_1'}{b_2'} \left(1 - \frac{\partial\sigma}{\partial\psi}\right)$$

$$C_{N_{cg}} = C_{N_{fuselage}} + C_{N_{wing}}$$

$$-\eta_{\rm NT}\overline{V}_{\rm VT}\left[a_{\rm o}(\psi-\sigma)+a_2'\xi\right]$$

$$\begin{split} \frac{\partial C_{N_{\rm cg}}}{\partial \psi} &= \frac{\partial C_{N_{\rm fuse lage}}}{\partial \psi} + \frac{C_{N_{\rm wing}}}{\partial \psi} \\ &- \eta_{\rm NT} \overline{V}_{VT} \; \left[a_1' \left(1 - \frac{\partial \sigma}{\partial \psi} \right. \right. \end{split}$$

$$+ a_2' \frac{\partial \xi}{\partial \psi} \Big]$$

When rudder is free to oscillate

$$\frac{\partial \xi}{\partial \psi} = -\frac{b_1'}{b_2'} \Big(1 - \frac{\partial \sigma}{\partial \psi} \Big)$$

$$\begin{split} \frac{\partial C_{N_{cg}}}{\partial \psi} &= \left(\frac{\partial C_{N}}{\partial \psi}\right)_{f} + \left(\frac{\partial C_{N}}{\partial \psi}\right)_{wing} \\ &- \eta_{f} V_{f} a_{1}' \left(1 - \frac{\partial \sigma}{\partial \psi}\right) \left(1 \\ &- \frac{a_{2}'}{a_{1}'} \cdot \frac{b_{1}'}{b_{2}'}\right) \\ \frac{\partial C_{N_{cg}}}{\partial \psi} &= \left(\frac{\partial C_{N}}{\partial \psi}\right)_{f} + \left(\frac{\partial C_{N}}{\partial \psi}\right)_{wing} \\ &- \eta_{f} V_{f} a_{1}' \left(1 - \frac{\partial \sigma}{\partial \psi}\right) F \end{split}$$

F = free rudder factor

$$a_1' = \frac{\partial C_{L_{VT}}}{\partial \alpha''} \quad \ a_2' = \frac{\partial C_{L_{VT}}}{\partial \xi}$$

$$b_1' = \frac{\partial C_H}{\partial \alpha''} \qquad b_2' = \frac{\partial C_H'}{\partial \xi}$$

Pure Yawing Motion (Dynamics):

Directional

Yaw motion is a function of

characteristics equation $\lambda^2 - N_r \lambda + N_\beta = 0$

$$\omega_n = \sqrt{N_\beta} \ \ 2\xi \omega_n = -N_r \text{E GATE COACHII}$$

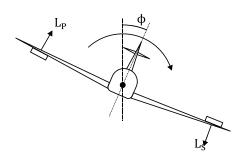
$$\xi = -\frac{N_r}{2\omega_n} \Rightarrow -\frac{N_r}{2\sqrt{N_\beta}}$$
 | Contribution of Fuselage:

$$N_{r} = \frac{\partial N/\partial r}{I_{z}} \ N_{\beta} = \frac{\partial N/\partial \dot{r}}{I_{z}}$$

$$N_{\beta} = \frac{\partial N}{\partial \beta} > 0$$

-- LATERAL STABILITY

Sign Convention: Rolling moment towards starboard is positive; rolling moment towards port side is negative & rolling angle towards starboard is positive; rolling angle towards port is negative



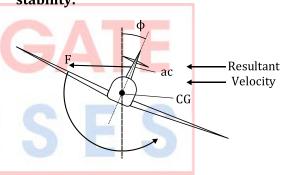
Criteria for Lateral Stability:

$$\frac{\partial C_L'}{\partial \varphi} = 0$$

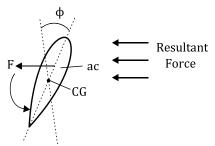
L' = Rolling moment

 ϕ = Rolling angle

1. Vertical tail contribution for lateral stability:



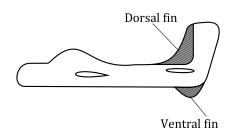
Vertical tail stabilizes for lateral stability.

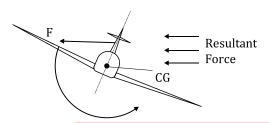


$$\frac{\partial C_L'}{\partial \phi} = \frac{-ve}{+ve} < 0 \text{ (stable)}$$

Fuselage contribution stability is $\left(\frac{\partial C_L'}{\partial \varphi} < 0\right)$ which stabilize in lateral mode.

3. Contribution of Dorsal and Ventral Fin:



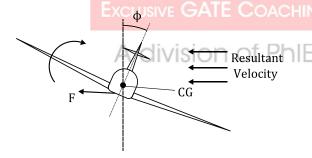


For Dorsal Fin

$$\frac{\partial C_{L}'}{\partial \phi} = \frac{-ve}{+ve} = (-ve) < 0 \text{ (stable)}$$

Dorsal fin contributes positively for lateral stability.

4. Ventral Fin:



$$\frac{\partial C_{L}'}{\partial \phi} = \frac{+ve}{-ve} > 0$$

Ventral fin contributes negatively for lateral stability.

5. Wing Contribution:

• Dihedral Wing:

Dihedral angle (Γ)

Dihedral angle (β)

$$\Delta \alpha = \beta \Gamma(\text{rad}) \Rightarrow \Delta \alpha = \frac{\beta \Gamma}{57.3} \text{ (deg)}$$

$$\Delta C_L = \Delta_\alpha \frac{dC_L}{d\alpha} \Rightarrow \Delta C_L = \frac{\beta \Gamma}{57.3} \frac{dC_L}{d\alpha}$$

Net rolling moment acting o airplane

 $L' = -2\Delta L \overline{y}$ (-ve sign for anticlockwise moment)

 ΔL = Change in lift.

Net change in both the wing so $(\times \text{ by } 2)$

$$\Delta L = \frac{1}{2} \rho V^2 S_{\Gamma} \Delta C_L$$

 S_{Γ} = Dihedral wing area of one

wing.

$$\Delta L = qS_{\Gamma}\Delta C_{L}$$

$$\Delta L = qS_{\Gamma} \frac{\beta \Gamma}{57.3} \frac{dC_{L}}{dC_{\alpha}}$$

Net change in rolling moment

$$L' = 2\Delta L \overline{y}$$
.

$$L' = \, -2q \, S_{\Gamma} \frac{\beta \Gamma}{57.3} \frac{dC_L}{d\alpha} \, \bar{y}$$

$$\begin{aligned} C_{L_{\text{roll}}}' &= -2 \frac{\beta \Gamma}{57.3} \frac{dC_L}{d\alpha} \frac{\overline{y}}{b} \frac{S_{\Gamma}}{S} \leftarrow \frac{dC_{L_{\text{roll}}}'}{\partial \beta} < 0 \\ C_{L_{\beta}}' &= -\frac{2\Gamma}{57.3} \frac{dC_L}{d\alpha} \frac{\overline{y}}{b} \frac{S_{\Gamma}}{S} \end{aligned}$$

→ Dihedral wing contributes stabilizing effect for lateral stability.

Sweep Back Wing:

Net rolling moment,

$$L' = -(L_s - L_p)\overline{y}$$

 L_s = Starboard Lift L_p = port lift.

$$L_{s} = \frac{1}{4} \rho V^{2} SC_{L} (\cos(\lambda - \beta))^{2}$$

$$L_{s} = \frac{1}{4} \rho SC_{L} (V \cos(\lambda - \beta))^{2}$$

$$\frac{\partial C_L'}{\partial \beta} = -\frac{C_L}{57.3} \frac{\overline{y}}{b} \sin 2\lambda$$

Sweep back wing provides stabilizing effect for lateral stability

Lateral Directional (Routh's Criteria):

$$A\lambda^4 + B\lambda^3 + C\lambda^2 + D\lambda + E = 0$$

To check the above equation is the characteristic equation for lateral direction

- 1. D and E > B and C
- 2. $(A \simeq 1)$
- 3. One of the coefficients is negative.

$$R = BCD - D^2A - B^2E > 0 (R > 0)$$

If one root is (+ve); it is corresponding to directional divergence.

If roots are (-ve); it is corresponding to damping in roll.

If roots are (-ve) but very small value i.e., in the order of 10^{-3} then it is corresponding to spiral motion

If roots are complex pair with -ve real part; it is corresponding to Dutch-roll mode $-p \pm 10^{-3}$

Pure Pitching Motion (Dynamics):

(Longitudinal)

 $\theta = Pitch angle; \quad q = Pitch axis$

Governing DE for pitching moment at CG of

iq.

$$\sum M_{cg} = I_v \ddot{\theta}$$

$$\Delta M_{cg} = I_{v} \, \Delta \ddot{\theta}$$

Characteristics Equation:

$$\lambda^2 - (M_q - M_{\dot{\alpha}})\lambda - M_{\alpha} = 0$$

$$\omega_n = \sqrt{-M_\alpha}$$

$$2\xi\omega_{n} = -(M_{q} = M_{\dot{\alpha}})$$

$$\Rightarrow \xi = -\frac{(M_q - M_{\dot{\alpha}})}{2\omega_n}$$

$$\xi = \, -\frac{(M_q - M_{\dot{\alpha}})}{2\sqrt{-M_\alpha}}$$

Ignoring

compressibility,

$$\xi = \frac{1}{(L/D)\sqrt{2}}$$

$$\omega = \frac{\sqrt{2} \ g}{V} \text{and } T = \frac{\sqrt{2} \ V \pi}{g}$$

where T is the time period of phugoid oscillation

Pure Rolling Motion (Dynamics):

(Lateral)

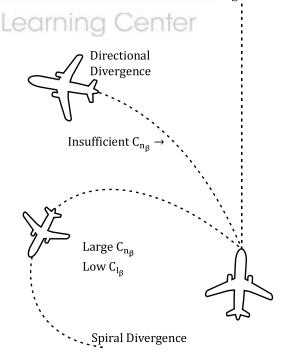
 \sum Rolling motion = $I_x \ddot{\phi}$

$$\frac{\partial L}{\partial \delta_a} \, \Delta \, \delta_a$$

Roll Moment due to aileron deflection

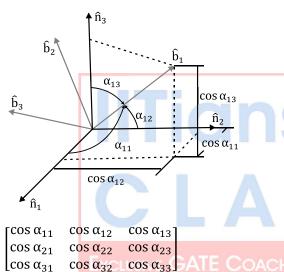
 $\frac{\partial L}{\partial P}$ ΔP Roll damping moment

Flight Path

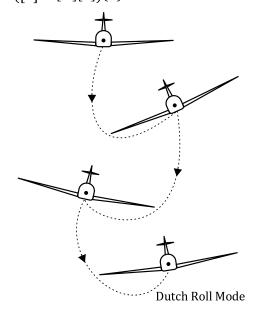


Direction Cosines And Euler Angles

Coordinates that completely describes the orientation of a rigid body relative to some reference frame. **Three** parameters are necessary and sufficient for orientation description (minimal set). A minimal set will contain at least one orientation where the kinematic differential equations are <u>singular</u> Singularity is avoided by using redundant sets of more than three parameters.

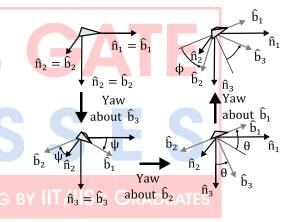


 $\begin{bmatrix} C_I^R \end{bmatrix} = \begin{bmatrix} C_B^R \end{bmatrix} \begin{bmatrix} C_I^B \end{bmatrix} \text{ projects N frame to R frame}$ $([\dot{C}] + [\widetilde{\omega}][C]) \{ \hat{n} \} = 0$



Euler Angles

Most commonly used sets of attitude parameters, Describe attitude of reference frame B relative to the frame I through three successive rotation angles about axes $\{\hat{b}\}$. Standard set of Euler angles used in aircraft and missile is (3(Yaw)-2(Pitch)-1(Roll)) i.e., (ψ, θ, φ) . This sequence is called **asymmetric** set. Other is (3-1-3) set of Euler angles, to define the orientation of orbital planes of satellites relative to the equatorial plane of planet. It is called **symmetric** set.



The final DCM is obtained by three cascading rotations

$$\begin{split} [M(\psi)] &= \begin{bmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ [M(\theta)] &= \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \\ [M(\varphi)] &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & \sin\varphi \\ 0 & -\sin\varphi & \cos\varphi \end{bmatrix} \end{split}$$

The direction cosine matrix in terms of the (3-2-1) Euler angles is

$$C = [M(\varphi)][M(\theta)][M(\psi)]$$

$$\begin{split} C &= \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{32} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \\ &= \begin{bmatrix} c\theta c\psi & c\theta s\psi & -s\theta \\ s\varphi s\theta c\psi - c\varphi s\psi & s\varphi s\theta s\psi + c\varphi c\psi & s\varphi c\theta \\ c\varphi s\theta c\psi + s\varphi s\psi & c\varphi s\theta s\psi - s\varphi c\psi & c\varphi c\theta \end{bmatrix} \\ \theta &= \sin^{-1}(-C_{13}); \end{split}$$

Not unique,
$$-\frac{\pi}{2} \le \sin^{-1}(-C_{13}) \le \frac{\pi}{2}$$
,

$$\psi = \tan^{-1}\left(\frac{C_{12}}{C_{11}}\right), \ \phi = \tan^{-1}\left(\frac{C_{23}}{C_{33}}\right)$$

IITians GATE C L A S S E S

EXCLUSIVE GATE COACHING BY IIT/IISC GRADUATES

A division of PhIE Learning Center

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

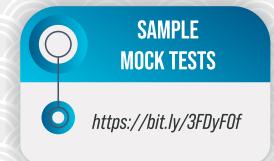
Topic Wise Tests

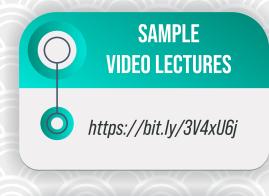
Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC





Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Admission Open for

GATE 2025/26

Live Interactive Classes

AEROSPACE ENGINEERING

