

Table Of Content

Air Standard Cycles	01
Morse Key Test	03
Combustion	03

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

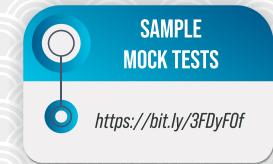
OUR COURSES

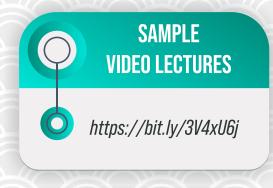
Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests


Module Wise Tests



Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

IC ENGINE

Chapter 1: AIR STANDARD CYCLES

$$Clearance \ ratio(C) = \frac{v_c}{v_s}$$

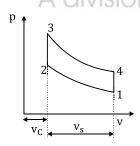
 v_c = Clearance volume

 v_S = Swept volume

 $\text{Compression ratio (r)} = \frac{v_c + v_s}{v_c}$

 $=\frac{\pi}{4} d^2L$

d = Bore di<mark>a</mark>meter


L = Stroke Length

Compression ratio (r) = $\frac{v_c + v_s}{v_c}$

EXCLUSIVE GATE COACHIN

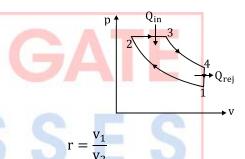
1. Otto Cycle (S.I Engine)

$$\eta_{otto} = 1 - \left(\frac{1}{r}\right)^{\gamma - 1}$$

$$r = \frac{v_1}{v_2} = \frac{v_4}{v_3}$$

$$\frac{T_2}{T_1} = \frac{T_3}{T_4} = \left(\frac{v_4}{v_3}\right)^{\gamma - 1}$$

Note: η_{otto} for max work done


$$(\eta_o)_{max} = 1 - \sqrt{\frac{T_1}{T_3}}$$

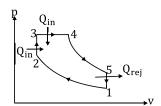
Mean Effective pressure (MEP):

$$P_{MEP} = \frac{(WD)_{net}}{v_{swept}}$$

 r_{otto} varies between 6 to 12

2. Diesel Cycle (CI Engine)

$$r_e = Expansion ratio = \frac{v_4}{v_3}$$


 $\rho(\text{cutoff ratio}) = \frac{v_3}{v_2}$

$$r_{\rm e} = \frac{r}{\rho}$$

$$\eta_{\text{diesel}} = 1 - \left(\frac{1}{r}\right)^{\gamma - 1} \left(\frac{\rho^{\gamma} - 1}{\gamma(\rho - 1)}\right)$$

 r_{diesel} varies between 16 to 22

3. **Dual Cycle:**

 η_{dual}

$$= 1$$

$$-\left(\frac{1}{r}\right)^{\gamma-1}\left(\frac{\alpha\;\rho^{\gamma}-1}{\gamma(\rho-1)\alpha+(\alpha-1)}\right)$$

pressure ratio $= \alpha = \frac{p_3}{p_2}$

Observation:

If
$$\alpha = 1$$
, $(p_3 = p_2) \rightarrow \text{Diesel cycle}$

If
$$\alpha = 1$$
, $\rho = 1 \rightarrow Otto$ cycle

r_{dual} varies between 12 to 16

Comparison of Otto, Diesel and Dual Cycle:

1. For same r and heat addition.

 $\eta_{\rm otto} > \eta_{\rm dual} > \eta_{\rm diesel}$

2. For same r and Q_{rejection}

 $\eta_{\rm otto} > \eta_{\rm dual} > \eta_{\rm diesel}$

3. For same peak pressure, peak temperature and $Q_{rejection}$

 $\eta_{diesel} > \eta_{dual} > \eta_{otto}$

4. For same peak pressure and heat input.

 $\eta_{diesel} > \eta_{dual} > \eta_{otto}$

5. For same peak pressure and work output.

 $\eta_{diesel} > \eta_{dual} > \eta_{otto}$

Engine Performance Parameters:

1. Heat added per second.

 $\frac{\text{HA}}{\text{sec}} = \dot{m}_{\text{fuel}} \times (\text{Calorific value})_{\text{fuel}}$

2. Indicated Power (IP):

Power available at piston due to the expansion of A/F mixture.

 $IP = \int pdv = Area of indicator$ diagram

3. Brake Power (BP):

Power available at the end of engine shaft.

$$BP = T_b \omega$$

 $T_b = Brake torque (N-m)$

$$\omega = \frac{2\pi N}{60} \; (\text{sec}^{-1})$$

4. Friction power (FP):

IP - BP

Indicated thermal efficiency

6

$$\eta_{\text{Thermal}} = \frac{\text{BP}}{\dot{m}_{\text{f}}(\text{CV})}$$

Brake Thermal efficiency

7.

$$\eta_{mechanical} = \frac{BP}{IP} = \frac{\eta_{Bth}}{\eta_{Ith}}$$

8. Relative efficiency:

$$\begin{split} \eta_{rel} &= \frac{Actual\ thermal\ efficeincy}{Air\ standard\ efficiency} \\ \eta_{rel} &= \frac{\eta_{Ith}\ or\ \eta_{Bth}}{\eta_{air\ standard}} \end{split}$$

9. Suction Flow Rate: $(\dot{\mathbf{v}}_s)$

 $\dot{v}_s = \frac{\pi}{4} D^2 L \times N \times K \quad (m^3/\text{sec})$

$$N = \frac{n}{2}$$
 for 4 stoke engine

N = n for 2 stoke engine

K = No. of cylinder

n = Speed of engine (in rps)

10. Mean Effective pressure:

Brake mean effective pressure

$$b_{mep} = \frac{BP}{\dot{v}_s}$$

Indicated mean effective pressure

$$i_{mep} = \frac{IP}{\dot{v}_s}$$

11. Specific Fuel consumption

Indicated specific fuel consumption.

$$i_{sfc} = \frac{\dot{m}_{fuel}}{IP}$$

Brake specific fuel consumption.

$$b_{sfc} = \frac{\dot{m}_{fuel}}{BP}$$

12. Average Piston Speed:

 $V_{piston} = 2 \times Stroke length$

$$\times \frac{N_{\rm rpm}}{60}$$

13.

$$\eta_{\text{vol}} = \frac{\dot{m}_{\nu_{\text{entry}}}}{\frac{\pi}{4} D^2 L \times N \times K}$$

Chapter 2: MORSE KEY TEST

4B = Brake Power when all the engines are firing.

$$3B = \frac{3B_1 + 3B_2 + 3B_3 + 3B_4}{4}$$

= Arithematic mean of engines firing when one of the engine is stopped one by one.

$$I = 4B - 3B$$

4I = 4(4B - 3B) Indicated power of engine

$$\eta_{mech} = \frac{4B}{4I}$$

Motoring Test:

- Used to find friction power of engine.
- rpm of running engine are noted.
- Motor is attached to engine shaft and made to run at same rpm. The
 power input to motor is friction power.

Chapter 3: COMBUSTION

Perfect Combustion

$$C_x H_y + z \left(O_2 + \frac{79}{21} N_2\right)$$

$$\rightarrow xCO_2 + \frac{y}{2} H_2O$$

$$+ z \left(\frac{79}{21}\right) N_2$$

$$Z = x + \frac{y}{4}$$

Stoichiometric AFR

⇒ No fuel in excess No air in excess { This ratio of AFM is stiochiometric AFR

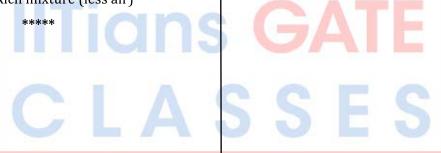
Equivalency Ratio (φ):

$$\varphi = \frac{(\text{FAR})_{actual}}{(\text{FAR})_{stoichiometric}} = \frac{(\dot{m}_f)_{actual}}{(\dot{m}_f)_{ideal}}$$

If $\phi < 1 \Rightarrow$ Less temperature, less

Power, less knocking (in petrol).

If $1 \le \varphi < 1.4 \Rightarrow$ High temperature, high Power, high knocking (in petrol).


If $\phi > 1.4 \Rightarrow$ Same effect as $\phi < 1$.

Generally:

If $\phi = 1 \Rightarrow$ Chemically correct mixture

If $\phi < 1 \Rightarrow$ Lean mixture (Excess air)

IF $\phi > 1 \Rightarrow$ Rich mixture (less air)

EXCLUSIVE GATE COACHING BY IIT/IISC GRADUATES

A division of PhIE Learning Center

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

Visit us www.iitiansgateclasses.com