

GATE-ME ENGINEERING MECHANICS

Table Of Content

Statics	01
Plane Truss	02
Principle of Virtual Work	03
Translatory Motion	03
Circular Motion	04
Friction	06
Work and Energy	06

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Engineering Mechanics

Chapter 1: STATICS (REST)

Newton 1st law (NFL)

 \vec{a} = Acceleration vector

For a Particle:

 $\sum \vec{F} = 0$, then $\vec{a} = 0 \rightarrow \text{Rest}$; Uniform velocity

For a Rigid Body:

$$\Sigma \vec{F}_{ext} = 0$$
 then $\vec{a}_{cm} = 0$

Case 1:

$$\vec{a}_{c_m} = 0$$
; $\Sigma \vec{F}_{ext} = 0$; $T - mg = 0$, $T = mg$

Z1 ext = 0, 1 mg = 0,1 = mg

Case 2:

Newton's Third Law (NTL):

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

Case:

Equilibrium:

Rest or uniform linear velocity

i.e.
$$\sum \vec{F} = 0$$

For Particle $\sum \vec{F} = 0$

For a rigid body $\sum \vec{F} = 0 \Rightarrow \sum \vec{F}_x = 0, \sum F_y = 0$

$$\sum \vec{F}_z = 0$$

 $\sum M = 0$ (about any point or line in plane)

System of Equilibrium:

1. Two force system

$$\vec{P} + \vec{Q} = 0, \vec{P} = -\vec{Q}$$

 $\overrightarrow{M} = 0 \rightarrow Collinear$

2. Three Force System

For equilibrium three forces must be coplanar and con-current.

$$\vec{P} + \vec{Q} + \vec{R} = 0$$

 $\sum \overrightarrow{M} = 0$ (Concurrent)

Lami's Theorem:

For a three-force system

$$Q \xrightarrow{\alpha} F$$

$$\frac{P}{\sin \alpha} = \frac{Q}{\sin \beta} = \frac{R}{\sin y}$$

Important concepts:

- a. As roller is about to move out of curb, normal reaction at A becomes zero, as it loses its contact at point A and cylinder or roller will be under equilibrium at verge of motion.
- b. Here comes a contact force (Resultant of normal reaction and friction at B (i.e., $R_{\rm B}$)
- c. So, only three forces are P, W, R_B which maintain equilibrium, so these must be coplanar and concurrent.
- d. If the horizontal force 'P' is applied at centre, no friction will be there i.e., reaction force at B will acts as normal reaction.

For P to be minimum its line of action should be $\bot^{\mathbf{r}}$ to R_B

Chapter 2: PLANE TRUSS

Numbers of members = m

Number of Joints = J

J = No. of Joints (Whether it is binary or ternary joint)

For perfect truss: m = 2j - 3 (D0F = 0) m < 2j - 3 Unstable truss (D0F > 0)

m > 2j – 3 Redundant, stable and (DOF < 0)

Method of Joint:

indeterminate truss

Equilibrium of joint is considered in method of joint to find loading in the member.

Procedure: Center

- 1. Find support reactions if required
- 2. Consider equilibrium of joint where only two members are meeting and use $\sum f_x = 0$, $\sum f_y = 0$.

Note:

 At a joint if 3 members are meeting and 2 members are collinear the forces in 3rd member = 0

2. If at a joint two members are meeting and they are non-collinear then forces in both members will be zero.

$$F_{AB} = F_{AC} = 0$$

Method of Section:

Equilibrium of a section of truss is considered.

Procedure:

- 1. Find reactions at support if required
- 2. Cut the member under consideration by section 1 1 and consider the equilibrium of either LHS at RHS of section 1 1 and use $\sum f_x = 0, \sum f_y = 0, \sum M = 0$ to find unknowns.

Note: Don't cut more than 3 members.

EXCLUSIVE GATE COACHI

Chapter 3: Principle of Virtual Work (POVW)

 $WD(Work\ done) = \vec{F} \cdot \vec{d}_s$

 $\overrightarrow{d}_s = \text{Displacement vector of a point where } \overrightarrow{F}$ is acting.

Principle of virtual work stats that if the system is in equilibrium then sum of virtual work by all the forces = 0

Virtual work = $F \cdot ds$

F = Actual force

ds = virtual displacement.

Procedure:

- Take any fixed point is problem as origin. fix coordinate axes and find coordinates of all joint where forces are acting.
- 2. Find virtual displacements.
- 3. Use POVW to find unknowns

Note: In POVW, we don't consider reaction at supports, because their work done is zero.

Example:

Find
$$P: Q = ?$$

Solution:

$$x_A = 2a\cos\theta$$
, $\partial x_A = -2a\sin\theta$ $\partial\theta$
 $x_B = +4a\cos\theta$, ∂x_B
 $= -4a\sin\theta$ $\partial\theta$

$$(VW)_P + (VW)_O$$

$$P \cdot \partial x_{A} - Q \partial x_{B} = 0$$

$$P[-2a \sin \theta] \partial \theta - Q[-4a \sin \theta \theta]$$

$$= 0$$

$$-2P + 4Q = 0$$

$$\frac{P}{Q} = 2$$

Chapter 4: TRANSLATORY MOTION

Kinematics:

For a particle with $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

$$\vec{V} = \frac{\vec{dr}}{dt}$$
 $\vec{a} = \frac{d\vec{V}}{dt}$

Acceleration (\vec{a}) :

• Uniform

$$v = u + at$$

$$S = ut + \frac{1}{2}at^2$$

$$V^2 = u^2 + 2as$$

• Non-uniform

$$a = \frac{dV}{dt}$$

$$a = V \cdot \frac{dV}{ds}$$

Newton's Second Law (NSL):

For a particle:

$$\sum \vec{F}_{ext} \neq 0$$
 then $\vec{a} \neq 0$

$$\vec{a} = \frac{\sum \vec{F}_{ext}}{m}$$
 NS

Dynamics:

Case A:

CLA

$$\begin{split} a &= \left(\frac{m_1 - m_2}{m_1 + m_2}\right) g \quad \begin{cases} m_1 g - T = m_1 a \rightarrow & \text{(1)} \\ T - m_2 g = m_2 a \rightarrow & \text{(2)} \end{cases} \\ T &= \left(\frac{2m_1 m_2}{m_1 + m_2}\right) g \end{split}$$

Case B:

$$M_B g - N_{BL} = M_B a$$
 NSL

For Lift

Chapter 5: CIRCULAR MOTION

Curvilinear Motion

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\vec{V} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}$$

$$\overrightarrow{V} = V_x \hat{\imath} + V_y \hat{\jmath} + V_z \hat{k}$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

Projectile Motion:

$$Total\ time\ (T) = \frac{2U\sin\theta}{g}$$

$$\text{Max height (H}_{\text{max}}) = \frac{\text{U}^2 \sin^2 \theta}{\text{g}}$$

Horizontal Range (R) =
$$U_x$$
. T

$$\boxed{R = \frac{U^2 \sin 2\theta}{g}} R_{max} \text{ at } \theta = 45^{\circ}$$

Equation of Trajectory:

$$y = x \tan \theta - \frac{gx^2}{2 U^2 \cos^2 \theta}$$
or
$$y = x \tan \theta \left(1 - \frac{x}{R}\right)$$

Circulation Motion:

$$\vec{r} = \cos \theta \hat{i} + \sin \theta \hat{j}$$

$$\hat{t} = \sin \theta (-\hat{i}) + \cos \theta (\hat{j})$$

Angular velocity

$$\omega = \frac{d\theta}{dt} \rightarrow (rad/sec)_{\text{SIVE GATE COACHIN}}$$

Angular acceleration

Angular acceleration
$$\alpha = \frac{d\omega}{dt} \rightarrow rad/sec^{2}$$

$$\alpha = \frac{d\omega}{dt} \rightarrow rad/sec^{2}$$

$$\alpha = \frac{d\omega}{dt} \rightarrow rad/sec^{2}$$

$$\alpha = r\omega^{2}(-\hat{r}) + r\alpha(\hat{r})$$

Direction of ' ω ' and ' α ' \rightarrow Right hand thumb rule.

Angular acceleration:

Uniform

$$\omega = \omega_0 + \alpha t$$

$$d\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha (d\theta)$$

Non-uniform

$$\alpha = \frac{d\theta}{dt}$$

$$\alpha = \omega \frac{d\omega}{d\theta}$$

Vector Analysis of Circular Motion:

$$\vec{\mathbf{r}} = |\mathbf{r}| \cdot \hat{\mathbf{r}}$$

$$\vec{r} = r[\cos\theta \,\hat{\imath} + \sin\theta \,\hat{\jmath}]$$

$$\vec{V} = \frac{d\vec{r}}{dt} = r[-\sin\theta\hat{\imath} + \cos\theta\hat{\jmath}]\frac{d\theta}{dt}$$

$$\vec{V} = r\omega(\hat{t})$$

$$\vec{a} = \frac{d\vec{V}}{dt} = r \left(\omega \left(-\cos\theta \frac{d\theta}{dt} \hat{i} \right) \right)$$

$$-\sin\frac{\mathrm{d}\theta}{\mathrm{d}t}\hat{\jmath}\bigg)\bigg)(-\sin\theta\hat{\imath}$$

$$+\cos\theta\hat{j}\frac{d\omega}{dt}$$

$$\vec{a} = r\omega^2(-\cos\theta\,\hat{\imath} + (-\sin\theta)\hat{\jmath})$$

$$+ r\alpha(-\sin\theta\hat{i} + \cos\theta\hat{j})$$

$$\vec{a} = r\omega^2(-\hat{r}) + r\alpha(\hat{t})$$

$$\vec{a} = \vec{a}_r + \vec{a}_T$$

 $\vec{a}_r = radial/centripetal$ acceleration

 $\vec{a}_T = tangential acceleration$

$$a_r = r\omega^2 = \frac{V^2}{r}$$

For uniform circular motion

$$V=r\cdot\omega=constant$$

$$\omega = constant$$

$$\alpha=0\text{, }\qquad \overrightarrow{a}_{T}=0$$

$$\vec{a} = \vec{a}$$
.

Chapter 6: FRICTION

Dry Friction/Coulomb Friction:

Static friction

Rest + Verge of motion

$$0 < f_s < f_{(s)_{max}}$$

$$(f_s)_{max} = \mu_s N$$

 μ_s = Coefficeint of static friction

N = Normal reaction

If applied force i.e:

$$P < (f_s)_{max}$$

then
$$(f_{(s)} = P)$$

Note:

 $f_{(s)_{max}} > F_{k_{NCLUSIVE}}$ GATE COACHI $\mu_s > \mu_k$

Then $f_s = \mu_k N$ Linear Momentum (\vec{P}) : $f_s = F_k$

Kinetic friction

Motion

$$F_K = \mu_k N$$
 constant

Angle of Static Friction (ϕ_s):

$$\tan \phi_s = \frac{(f_s)_{max}}{N}$$

$$\tan \varphi_s = \frac{\mu_s N}{N} = \mu_s$$

Angle of Kinetic Friction (ϕ_k):

During motion of body, the angle made by contact force with normal reaction is called as φ_k.

$$tan(\varphi_k) = \frac{f_k}{N} = \frac{\mu_k N}{N} = \mu_k$$

Note:

If μ_s and μ_k not given separately

1.
$$\mu_s = \mu_k = \mu$$

2.
$$0 \le f_s \le (f_s)_{max} = \mu N = f_k$$

3.
$$tan \phi = \mu \ (\phi = angle \ of \ friction)$$

Chapter 7: WORK & ENERGY

 $\vec{P} = m \cdot \vec{V}_{cm}$

$$\frac{d\vec{P}}{dt} = m \cdot \frac{d\vec{V}_{cm}}{dt} \Rightarrow \frac{d\vec{P}}{dt} = \vec{m} \cdot \vec{a}_{cm} = \Sigma \vec{F}_{ext}$$

$$\sum \vec{F}_{\text{ext}} = \frac{d\vec{P}}{dt}$$

Angle made by normal reaction with contact for de. Conservation of Linear Momentum \vec{P} :

 \vec{P} = Constant

$$d\vec{P} = 0$$

Only when $\Sigma \vec{F}_{ext} = 0$

 $P_x = constant; P_y = Constant$

After collisio $[v_2 > v_1]$

 $P_x = constant$

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

Collision:

1. Perfectly elastic collision $e = 1 (m_1 + m_2)$ system

$$(k\epsilon)_{initial \ of \ system} = (k\epsilon)_{Final \ of \ system}$$

$$\boxed{ \begin{aligned} \underline{m_1 u_1 + m_2 u_2 &= m_1 v_1 + m_2 v_2 \\ 1 &= \frac{1}{2} m_1 u_1 + \frac{1}{2} m_2 u_2 &= \frac{1}{2} m_1 v_1 + \frac{1}{2} m_2 v_2 \end{aligned}} \rightarrow \boxed{1}$$

From (1) & (2)

$$(u_1 - u_2 = v_2 - v_1)$$

 $u_1 - u_2 = Velocity of approach$

 $v_2 - v_1 = Velocity of separation$

$$\left(e = \frac{v_2 - v_1}{u_1 - u_2}\right) \text{ division of Pr}$$

e = coefficient of restitution

2. Perfectly Inelastic (Plastic) collision (e = 0)

$$m_1 u_1 + m_2 u_2 = (m_1 + m_2)v$$

 $(k\varepsilon)_{loss} = (k\varepsilon)_{initial} - (k\varepsilon)_{final}$

3. Partially Elastic Collision: (0 < e < 1)

No complete region in size \Rightarrow Same energy loss due to deformation.

kε ≠ conserved

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

Work done:

$$WD = \vec{F} \cdot \vec{d}s = F ds \cos \theta$$

$$(WD)_{\text{spring}} = \int Fs \, dx = -\frac{1}{2}kx^2$$

Work Energy Theorem:

Work done by all the forces acting on a particle = change in kinetic energy

$$W_{\text{net}} = (k\epsilon)_{\text{final}} - (k\epsilon)_{\text{initial}}$$

If $(\text{work done})_{\text{non conservative}} = 0$

Then mechanical energy = constant

Rotation of Rigid Bodies:

Mass moment of inertia

$$\begin{split} I &= m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \cdots \\ I &= \sum & m_i r_i^2 \end{split}$$

Let $\sum M_i = m = Total mass$

$$I = mk^2$$

$$k = radius of gyration$$

Ring/Hollow Cylinder:

Rod:

$$I_{cm} = \frac{mL^2}{12}$$

Solid Sphere

Disc/Hollow Cylinder

Hollow sphere

$$I = \frac{2}{3} mR^2$$

Rod about end

$$J = \frac{mL^2}{3}$$

Dynamics of Rigid Body Rotation:

If
$$\sum \overrightarrow{T}_{net} = 0$$
 then $\overrightarrow{\alpha} = 0$

If
$$\sum \overrightarrow{T} \neq 0$$
 then $\overrightarrow{\alpha} \neq 0$

$$\sum \vec{T}_{net} = I \cdot \vec{\alpha}$$

$$\Sigma \vec{T}_{cm} = I_{cm} \cdot \alpha$$

$$\Sigma \vec{T}_{Axis} = I_{Axis} \cdot \alpha$$

Angular Momentum (\vec{L}) (Moment of linear momentum)

$$\vec{L} = \vec{r} \times \vec{P}$$

$$\Sigma \vec{T} = \frac{dL}{dt}$$

Conservation of Angular Momentum:

$$\vec{L} = \text{Constant}, dL = 0, \text{ when } \Sigma \vec{T} = 0$$

Eg:
$$I_1\omega_1 = I_2\omega_2$$

Rotational Kinetic Energy

$$k\epsilon = \sum \frac{1}{2} m_i V_i^2 = \sum \frac{1}{2} m_i r_i^2 w_i^2$$

$$k\epsilon = \frac{1}{2}I \cdot \omega^2$$

EY III/IISC GRADUATES Word done:

$$(wD)_{T} = T \cdot d\theta$$

$$+ve$$
 $-ve$ θ

Power (P) =
$$T \cdot \frac{d\theta}{dt} = T \cdot w$$

= $\frac{2\pi NT}{60} (N \rightarrow rpm)$

General Motion = Rotation + Translation

Conditions:

If $S_A = r\theta \rightarrow Pure rolling (V = r\omega \ a = r\alpha)$

If $S_A > r\theta \rightarrow Skidding$

If $S_A > r\theta \rightarrow Slipping$

Velocity Analysis:

$$\vec{V}_T = \vec{V}_{Translation} + \vec{V}_{rotation}$$

$$\vec{V}_A = rw\hat{\imath} + 0 = r\omega$$

$$\vec{V}_B = r\omega i + r\omega \hat{i} = 2r\omega \hat{i}$$

$$V_c = r\omega \hat{i} - r\omega \hat{i} = 0$$
 (Pure rolling)

Acceleration Analysis:

$$\begin{aligned} \vec{a}_T &= \vec{a}_{Trass} + \vec{a}_{Rot} \\ a_B &= r\alpha \hat{i} + r\alpha \hat{i} - r\omega^2 \hat{j} = 2r\alpha \hat{i} - r\omega^2 \hat{j} \\ a_C &= r\alpha \hat{i} - r\alpha \hat{i} + r^2\alpha \hat{j} \\ \\ |\vec{a}_C &\neq 0| \end{aligned}$$

Note:

- In pure rolling static friction will be there on the roller, because contact point has zero velocity.
- 2. Energy of a roller rolling on rough surface remains conserved because the work done by static friction = 0.

I-Centre (Instantaneous Centre)

Point about which a body is in general motion can be assumed in pure rotation to find velocity only.

Kinetic Energy in Rolling:

Body is rolling due to applied torque (T)

$$(k\varepsilon)_{\text{Rolling}} = \frac{1}{2} \text{mV}^2 + \frac{1}{2} I_A \omega^2$$

$$= \frac{1}{2} \text{mr}^2 \omega^2 + \frac{1}{2} I_A \omega^2$$

$$= \frac{\omega^2}{2} [I_A + \text{mr}^2]$$

$$(K\varepsilon)_{\text{rolling}} = \frac{1}{2} I_C \cdot \omega^2$$

Dynamics:

$$\sum F_{\text{net}} = ma_{\text{cm}} \text{ (NSL)}$$

$$\sum F_{net} = m \cdot r\alpha \rightarrow 1$$

$${\textstyle\sum} T_{C_m} = I_{C_m} \times \alpha$$

$$\sum T_{Axis} = I_{Axis} \times \alpha$$

Friction in Rolling:

Case 1:

 $F = m a_{cm} \rightarrow NSL$

 $F = m r \alpha$ $(T_{app} = T)$

 $\Sigma T_{cm} = I_{cm}$ Exclusive GATE COACHING BY IIT/IISC GRADUATES

 $(T_{app} - F(r)) = I_{C_m} \alpha_{ivision}$ of PhIE Learning Center

Case 2:

In this case friction will roll the body

$$P_{app} - f(r) = m \cdot a_{cm}$$

$$a_{cm} = r\alpha$$

$$F(r) = I_{cm}\alpha$$

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

Visit us www.iitiansgateclasses.com