

GATE-AE MECHANICAL VIBRATIONS

Table Of Content

Basic of Mechanical Vibrations and	05
Undamped Free Vibration	
Free Damped Vibration	09
Forced Vibration	13
Two-Degree of Freedom	15
Vibration of Continuous Systems	16

OUR ACHIEVERS

GATE-2023 AE

SRIRAM R
SSN COLLEGE CHENNAI
AIR - 2

Akriti PEC, Chandigarh AIR - 6

SHREYASHI SARKAR IIEST, SHIBPUR AIR - 8

YOKESH K MIT, CHENNAI AIR - 11

HRITHIK S PATIL RVCE, BANGALORE AIR - 14

And Many More

GATE-2022 AE

SUBHROJYOTI BISWAS IIEST, SHIBPUR AIR - 4

SANJAY. S AMRITA UNIV, COIMBATORE AIR - 7

AKILESH . G HITS, CHENNAI AIR - 7

D. MANOJ KUMAR AMRITA UNIV, COIMBATORE AIR - 10

DIPAYAN PARBAT IIEST, SHIBPUR AIR - 14

And Many More

GATE-2021 AE

NILADRI PAHARI IIEST, SHIBPUR AIR - 1

VISHAL .M MIT, CHENNAI AIR - 2

SHREYAN .C IIEST, SHIBPUR AIR - 3

VEDANT GUPTA RTU, KOTA AIR - 5

SNEHASIS .C IIEST, SHIBPUR AIR - 8

And Many More

OUR PSU JOB ACHIEVERS DRDO & ADA Scientist B

Job Position for Recruitment (2022-23) Based on GATE AE score

Mr. Abhilash K (Amrita Univ Coimbatore)

Ms. Ajitha Nishma V (IIST Trivendrum)

Mr. Dheeraj Sappa (IIEST Shibpur)

Ms. F Jahangir (MIT Chennai)

Mr. Goutham (KCG College Chennai)

Mr. M Kumar (MVJ College Bangalore)

Mr. Mohit Kudal (RTU Kota)

Mr. Niladhari Pahari (IIEST Shibpur)

Mr. Nitesh Singh (Sandip Univ Nashik)

Mr. Ramanathan A (Amrita Univ Coimbatore)

Ms. Shruti S Rajpara (IIEST Shibpur)

HAL DT ENGINEER

Job Position for Recruitment (2023)

Mr. Anantha Krishan A.G (Amrita Univ Coimbatore)

Mr. S.S Sanjay (Amrita Univ Coimbatore)

Mr. Shashi Kanth M (Sastra Univ Taniore)

Mr. Vagicharla Dinesh (Lovely Professional Univ Panjab)

FATHIMA J (MIT, CHENNAI) HAL DT ENGINEER 2022

SADSIVUNI TARUN (SASTRA TANJORE) HAL DT ENGINEER 2021

MOHAN KUMAR .H (MVJCE, BANGALORE) HAL DT ENGINEER 2022

VIGNESHA .M (MIT, CHENNAI) MRS E-II CRL BEL

ARATHY ANILKUMAR NAIR (AMRITA UNIV, COIMBATORE) HAL DT ENGINEER 2021

RAM GOPAL SONI (GVIET, PUNJAB) CEMILAC LAB, DRDO

MECHANICAL VIBRATIONS

■ Chapter 1: BASIC OF MECHANICAL VIBRATIONS AND UNDAMPED FREE VIBRATION

Basic:

Free (Natural) Vibration:

Elastic vibrations in which there is no friction and external forces after the initial releases of the body are known as a free or natural vibration.

Damped Vibrations:

When the energy of a vibrating system is gradually dissipated by friction and other resistances. The vibrations are said to be damped. The vibrations gradually cause and the system rests in its equilibrium position.

Forced Vibrations:

When a repeated force continuously acts on a system, the vibrations are said to be forced. The frequency of the vibrations is that of the applied force and is independent of their own natural frequency of vibrations.

Periodic Motion:

A motion which repeats after equal interval time. **Example:** Simple harmonic motion (SHM)

Time Period:

Time to taken for complete one cycle. Frequency (f) – No. of cycle per unit time $\omega = 2\pi f(rad/sec)$

Amplitude:

The maximum displacement of a vibrating body from the mean position.

Natural Frequency (ω_n):

- It is a dynamic characteristic of system.
- It is a load independent.
- It is the frequency of free vibration system.

Resonance:

When frequency of system becomes equal to natural frequency of system.

Amplitude of vibration becomes excessive.

Damping

The resistance to the motion of vibrating system.

1. Equation of Stiffness of a Spring:

For A helical Spring

$$k_{equivalent} = k_{eq} = \frac{d^4G}{8D^3n}$$

d - Wire diameter

D — Coil diameter

G – Shear modulus

n – Number of turns

2. Springs in Series:

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$$

Springs in parallel

$$\mathbf{k}_{eq} = \mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \dots + \mathbf{k}_n$$

3. **Equivalent Springs of System**

System	Formula of Stiffness
Rod Under Axial Load	$k = \frac{EA}{l}$
Tapered Rod	$k = \frac{\pi EDd}{4l}$
Fixed-Fixed Beam	$k = \frac{192EI}{l^3}$
Cantilever Beam	$k = \frac{3EI}{l^3}$
Simply Supported	$k = \frac{48EI}{l^3}$
Axial motion of Piston in a cylinder (Dashpot damper).	$C_{eq} = \frac{\mu 3\pi D^3 l}{4d^3} \left(1 + \frac{2d}{D}\right)$

4. Combination of Dampers:

- a. Parallel $C_{eq} = C_1 + C_2 + \cdots + C_n$
- b. Series: $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots + \frac{1}{C_n}$

5. Categories of Vibration:

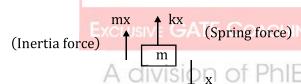
- a. $m\ddot{x} + kx = 0$; Free undamped
- b. $m\ddot{x} + c\dot{x} + kx = 0$; Free damped
- c. $m\ddot{x} + kx = F(x)$; Forced undamped
- d. $m\ddot{x} + c\dot{x} + kx =$

F(x); Forced damped

6. Free Vibration:

Translational Vibration

Fig (a) Single degree of freedom $For\ initial\ state\ equilibrium,\ mg=k\Delta$ Where Δ = state deflection due to mass



When deflected by x then equation can be written as,

$$m\ddot{x} + kx = 0$$
(1)

This is the equation of simple harmonic and is analogous to,

$$\ddot{x} + \omega_n^2 x = 0$$

By comparing above equation with equation (1a), we can find

$$\omega_n = \sqrt{\frac{k}{m}}$$

By putting $\frac{k}{m}$ from initial static equilibrium,

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{g}{\Delta}}$$

Equation of motion for

$$m\ddot{x} + kx = 0$$

$$x = X \sin(\omega_n t + \phi) \dots \dots \dots \dots (2)$$

Initial Conditions

If the motion is started by displacing the mass through a distance x_0 and giving a velocity V_0 , then the solution of equation (2) can be found as,

$$t = 0$$
, $x = x_0$; $\dot{x} = V_0$

$$x = X \sin(\omega_n t + \phi)$$

$$x_0 = X \sin \phi$$

$$\dot{x} = X\omega_n \cos(\omega_n t + \phi)$$

$$V_0 = X\omega_n \cos \phi$$

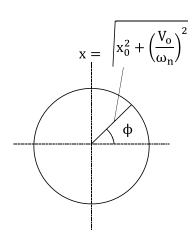
$$\rightarrow x_0^2 + \left(\frac{V_0}{\omega_n}\right)^2 = X^2$$

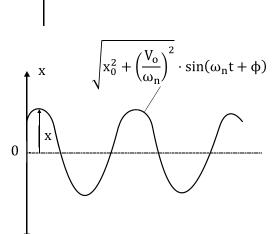
$$X = \sqrt{\left[x_0^2 + \left(\frac{V_0}{\omega_n}\right)^2\right]}$$

$$\tan \phi = \frac{x_0}{V_{1/(x)}}$$

$$\phi = \tan^{-1} \left[\frac{x_0}{V_0/\omega_n} \right]$$

Solution can be plotted graphically

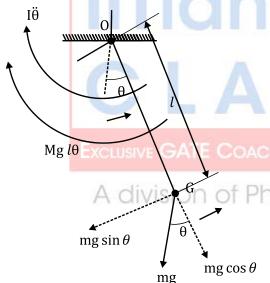




Rotational Vibration

Let Pendulum is displayed by an angle θ of

small value.



Here G is the centre of gravity.

Restoring torque = mgsin $\theta \times l$ = mgl. θ

Inertial torque $= I\ddot{\theta}$

$$\therefore I\ddot{\theta} + \text{mgl.} \, \theta = 0$$

$$\omega_n = \sqrt{\frac{mgl}{l}}$$

Torsional Vibration

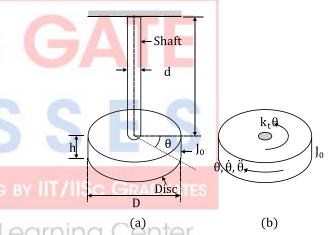


Fig: Torsional Vibration of a Disc

$$J_0\ddot{\theta} + k_t\theta = 0$$

$$\omega_n = \left(\frac{k_t}{I_0}\right)^{1/2}$$

And the period in seconds and frequency of vibration in cycles per second are

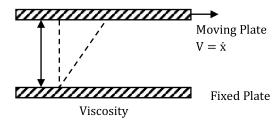
$$\tau_n = 2\pi \left(\frac{J_0}{k_t}\right)^{1/2}$$

$$f_{\rm n} = \frac{1}{2\pi} \left(\frac{k_t}{J_0}\right)^{1/2}$$

Chapter 2: FREE DAMPED VIBRATION:

Types of Damping

• Viscous Damping



$$F \,=\, \frac{\mu A}{t} \,\, \dot{x}$$

Where, A = Area of the plate;

t = Thickness

 μ = Coefficient of absolute viscosity of the film

$$F = c \dot{x}$$

Where,
$$c = \frac{\mu A}{t}$$

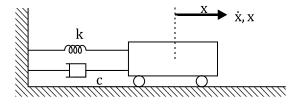
Where, c is viscous damping coefficient.

Energy Dissipation in Viscous Damping

$$\Delta E = \pi c \omega A^2$$

Differential Equation of Damped Free Translational Vibration

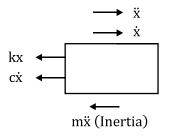
A division of PhIE



The equation of motion,

$$m\ddot{x} + c\dot{x} + kx = 0$$

Free body diagram



For damped $(m\ddot{x} + c\dot{x} + kx = 0)$

Using
$$x = Ae^{-st}$$

$$S_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m}$$
$$= \frac{-c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{k}{m}}$$

Critical Damping Coefficient:

$$C_c = 2m\omega_n = 2\sqrt{km}$$

Natural Frequency:

$$\omega_n = \sqrt{k/m}$$

Damping Factor or Damping Ratio

$$|\xi = \frac{c}{c_c}$$
 So Graduates

Lea Now,
$$\frac{C}{2m} = \frac{C}{C_c} \cdot \frac{C_c}{2m} = \zeta \omega_n$$

So,

$$S_{1,2} = (-\zeta \pm \sqrt{\zeta^2 - 1}) \omega_n$$

If $C>C_c$ or $\zeta>1,$ system is over damped $C \,=\, C_c \quad \text{or} \ \zeta=\, 1, \ \text{system is critically-}$ damped

 $C < C_c$ or $\zeta < 1$, system is under-damped

Over Damped System ($\zeta > 1$)

General solution,

$$x = C_1 e^{(-\zeta + \sqrt{\zeta^2 - 1}) \omega_n t}$$

$$+ C_2 e^{(-\zeta - \sqrt{\zeta^2 - 1}) \omega_n t}$$

For Intial condition,
$$x = X_0$$

And $\dot{x} = 0$

$$\rightarrow At t = 0$$

Solving for the condition,

$$\begin{split} x \; &= \; \frac{X_0}{2\sqrt{\zeta^2-1}} \Big[\Big(-\zeta \\ &+ \; \sqrt{\zeta^2-1} \Big) \, e^{\left(-\zeta + \; \sqrt{\zeta^2-1}\right) \omega_n t} \\ &+ \Big(-\zeta \\ &- \; \sqrt{\zeta^2-1} \Big) \, e^{\left(-\zeta - \; \sqrt{\zeta^2-1}\right) \omega_n t} \; \Big] \end{split}$$

Critical Damped System ($\zeta = 1$)

$$S_1 = S_2 = -\omega_n$$

Solution, $x = (C_1 + C_2 t)e^{-\omega_n t}$

For initial condition, $x = X_0$ And $\dot{x} = 0$ $\rightarrow At t = 0$

$$\rightarrow x = X_0(1 + \omega_n t) e^{-\omega_n t}$$

- Critical damping is smallest damping for which response is non-oscillatory
- With Critical damping system will have steep fall in displacement

Under – Damped System ($\zeta < 1$)

$$x = \frac{X_0}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t + \phi) \text{ Where, } \phi$$
$$= \tan^{-1} \left(\frac{\sqrt{1 - \zeta^2}}{\zeta}\right)$$

$$Amplitude \, = \, \frac{X_0}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t}$$

Which is seems to decay exponentially with time. Theoretically, the system will never come to rest, although the amplitude of vibration may become infinitely small.

$$\text{Period}, T_d \; = \; \frac{2\pi}{\omega_d} \; \; = \; \frac{2\pi}{\omega_n(\sqrt{1-\zeta^2})} \label{eq:period}$$

Damped Frequency:

$$\omega_d = \omega_n \, \sqrt{1 - \xi^2}$$

Logarithmic Decrement:

It is the ratio of any two successive amplitudes for an under-damped system vibrating freely is constant and it is a function of damping only

$$\delta = \frac{1}{n} \ln \left(\frac{x_0}{x_n} \right) = \frac{2\pi \xi}{\sqrt{1 - \xi^2}} \approx 2\pi \xi (\xi << 1)$$

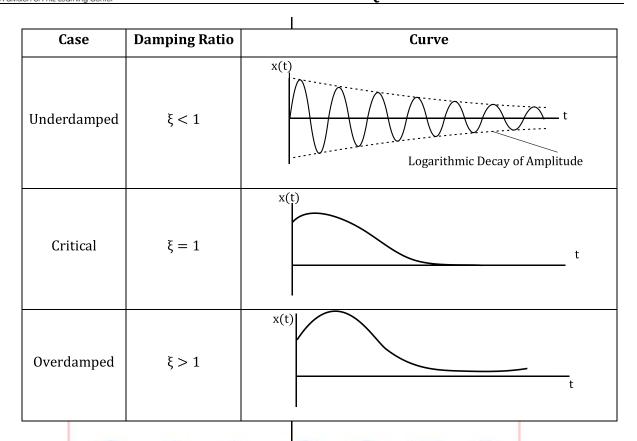
Here, amplitude = n+1

Cycles = n - 0 = n

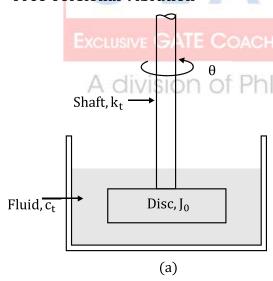
SES

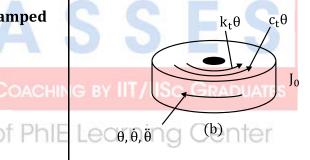
BY IIT/IISC GRADUATES

Learning Center



Differential Equation of Damped Free Torsional Vibration





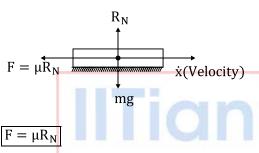
$$\begin{split} J_0 \ddot{\theta} + c_t \dot{\theta} + k_t \theta &= 0 \\ \omega_d &= \sqrt{1 - \zeta^2 \omega_n} \\ \omega_n &= \sqrt{k_t/J_0} \\ \zeta &= \frac{c_t}{c_{tc}} = \frac{c_t}{2J_0 \omega_n} = \frac{c_t}{2\sqrt{k_t J_0}} \end{split}$$

Note- In case of rotational vibration also equation of motion and other quantities will be like torsional vibration

COULOMB DAMPING

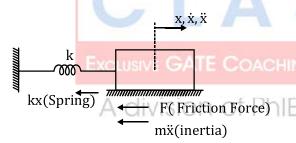
This type of damping occurs when two machine parts rubs against each other, dry or un-lubricated. The damping resistance in the case is practically constant and is independent of the rubbing velocity.

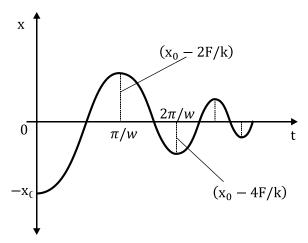
General expression for coulomb damping is:



Where, μ = coefficient of friction

 R_N = Normal reaction





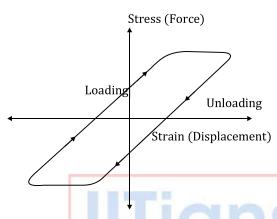
- 1. The equation of motion is nonlinear with Coulomb damping, whereas it is linear with viscous damping.
- 2. The natural frequency of the system is unaltered with the addition of Coulomb dumping, whereas it is reduced with the addition of viscous damping.
- The motion is periodic with Coulomb damping, whereas it can be nonperiodic in a viscously damped (overdamped) system.
- 4. The system comes to rest after some lime with Coulomb damping, whereas the motion theoretically continues forever (perhaps with an infinitesimally small amplitude) with viscous and hysteresis damping.
- 5. The amplitude reduces linearly with Coulomb damping, whereas it reduces exponentially with viscous damping.
- 6. In each successive cycle, the amplitude of motion is reduced by tire amount 4fiN/k, so the amplitudes at the end of any two consecutive cycles are related:

$$X_n = X_{n-1} - \frac{4\mu N}{k}$$

Structural Damping

This type of damping is due to the internal friction of the molecules. The

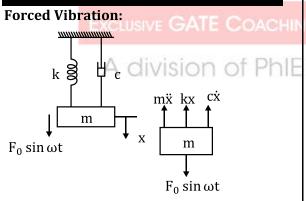
stress - strain diagram for vibrating body is not a straight line but forms a hysteresis loop. The area of which represents the energy dissipated due to molecular friction per cycle per unit volume.



The energy loss per cycle,

$$E = \pi k \lambda A^2$$

Chapter 3: FORCED VIBRATION



 $m\ddot{x} + c\dot{x} + kx = F_0 \sin \omega t$

Above differential equation will have two part in solution

The complementary function is obtained from

$$\begin{split} &m\ddot{x}+c\dot{x}+kx=0\\ &x_{c}=A_{2}e^{-\zeta\omega_{n}t}\sin\left[\left(\sqrt{1-\zeta^{2}}\right)\omega_{n}t+\right.\left.\varphi_{2}\right] \end{split}$$

If the particular solution is x_p then

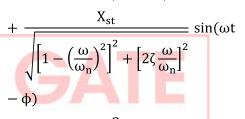
$$x_p = X\sin(\omega t - \phi)$$

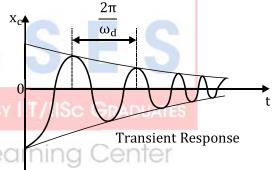
Then,
$$X = \frac{X_{st}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\frac{\omega}{\omega_n}\right]^2}}$$

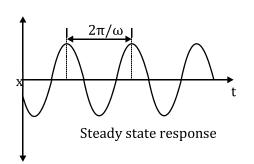
$$\phi = \tan^{-1} \left[\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \right]$$

$$x = x_c + x_p$$

$$=\;A_2 e^{-\zeta \omega_n t} \, sin[\left(\sqrt{1-\zeta^2}\right) \omega_n t + \; \varphi_2]$$







Magnification Factor

The ratio of the steady state amplitude to the zero frequency (static) deflection i.e., $\frac{X}{X_{st}}$ is

defined as the magnification factor and is denoted by M.F.

$$\begin{aligned} \text{M.F.} &= \frac{X}{X_{st}} \\ &= \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\frac{\omega}{\omega_n}\right]^2}} \end{aligned}$$

At resonance,
$$\frac{\omega}{\omega_n} = 1$$

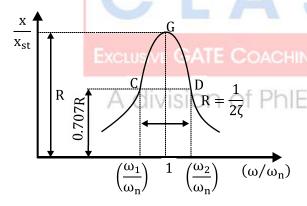
$$M.F. = \frac{X}{X_{st}} = \frac{1}{2\zeta}$$

Quality Factor

The magnification factor at resonance is known as quality factor and is denoted by R.

$$R = \frac{1}{2\zeta}$$

Half power points



 \rightarrow C and D are the half power points.

Assume ω_1 and ω_2 are frequency corresponding to points C and D respectively.

$$\frac{\omega_2 - \omega_1}{\omega_n} = 2\zeta = \text{Band width} = \frac{1}{R}$$

Force Transmissibility

$$F_{tr} = \sqrt{(kX)^2 + (c_{\omega}X)^2}$$

$$F_{tr} = X\sqrt{k^{2} + (c_{\omega})^{2}}$$

$$F_{tr} = \frac{F_{o}\sqrt{k^{2} + (c_{\omega})^{2}}}{\sqrt{(k - m\omega^{2})^{2} + (c_{\omega})^{2}}}$$

$$F_{tr} = \frac{1 + (2\zeta \frac{\omega}{\omega})^{2}}{\sqrt{(k - m\omega^{2})^{2} + (c_{\omega})^{2}}}$$

$$T_{r} = \frac{F_{tr}}{F_{o}} = \frac{\sqrt{1 + \left(2\zeta \frac{\omega}{\omega_{n}}\right)^{2}}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2} + \left[2\zeta \frac{\omega}{\omega_{n}}\right]^{2}}}$$

T_r being the transmissibility

Forced Vibration with Rotating and Reciprocating Unbalance

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = m_0e\omega^2\sin\omega t$$

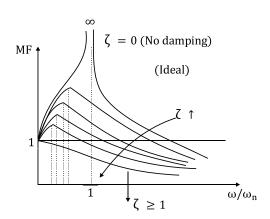
$$X = \frac{\frac{m_0 e \omega^2}{k}}{\sqrt{\left(1 - \frac{m\omega^2}{k}\right) + \left(\frac{c\omega}{k}\right)}}$$

$$\frac{X}{\left(\frac{m_0 e}{m}\right)^2} = -\frac{\left(\frac{\omega}{\omega_n}\right)^2}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta \frac{\omega}{\omega_n}\right]^2}}$$

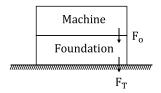
$$\phi = \tan^{-1} \left[\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \right]$$

At resonance when $\frac{\omega}{\omega_n} = 1$, we have

$$\frac{X}{\left(\frac{m_0 e}{m}\right)} = \frac{1}{2\zeta}$$



Vibration Isolation:



$$\epsilon = \frac{F_{\rm T}}{F_{\rm o}}$$

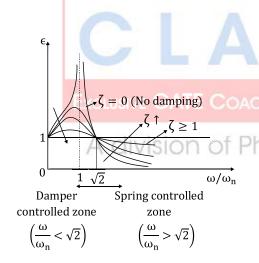
If $0 < \epsilon < 1$ (Machine support)

If $\epsilon > 1$ (Machine adverse)

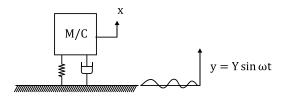
 ϵ = Machine Transmissibility

$$\epsilon = \frac{\sqrt{1 + \left(2\zeta\left(\frac{\omega}{\omega_n}\right)\right)^2}}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}}$$

 ϵ depends on ζ and ω/ω_n



Motion Transmissibility:

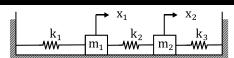


$$\epsilon = \frac{\text{Aplitude of mass(X)}}{\text{Amplitude of foundation (Y)}}$$

$$m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0$$

$$\varepsilon = \frac{X}{Y} = \pm \frac{\sqrt{k^2 + (c\omega)^2}}{\sqrt{(k - m\omega^2)^2 + (c\omega)^2}}$$

Chapter 4: TWO-DEGREE OF FREEDOM



If x_1 and x_2 are degrees of freedom

Let $x_1 > x_2$

Equation of motion for masses

$$m_1\ddot{x_1} + (k_1 + k_2)x_1 - k_2x_2 = 0$$
(1)

$$m_2\ddot{x_2} + (k_3 + k_2)x_2 - k_2x_1 = 0$$
(2)

Let,
$$x_1 = X_1 \cos(\omega t + \phi)$$
; $x_2 = X_2 \cos(\omega t + \phi)$

φ)

$$\{-m_1\omega^2 + (k_1 + k_2)\}X_1 - k_2X_2 = 0$$
(3)

$$-k_2X_1 + \{-m_2\omega^2 + (k_2 + k_3)\}X_2 = 0$$
(4)

$$(m_1m_2)\omega^4 - \{m_1(k_3 + k_2) + m_2(k_1 + k_2)\}\omega^2$$

$$+ \{k_1k_2 + k_2k_3 + k_3k_1\} = 0$$

Above equation is the equation to calculate natural frequencies

ratio of amplitude of frequencies can be found.

$$r_{1} = \frac{X_{1}^{(1)}}{X_{2}^{(1)}}$$

$$= \frac{k_{2}}{-m_{1}\omega_{1}^{2} + (k_{1} + k_{2})}$$

$$= \frac{-m_{2}\omega_{1}^{2} + (k_{2} + k_{3})}{k_{2}};$$

(amplitude ratio at frequency ω_1)

$$r_{2} = \frac{X_{1}^{(2)}}{X_{2}^{(2)}}$$

$$= \frac{k_{2}}{-m_{1}\omega_{2}^{2} + (k_{1} + k_{2})}$$

$$= \frac{-m_2\omega_2^2 + (k_2 + k_3)}{k_2} ;$$

(amplitude ratio at frequency ω_2)

The normal modes of vibration corresponding to ${\omega_1}^2$ and ${\omega_2}^2$ can be expressed.

$$\vec{X}^{(1)} = \begin{cases} X_1^{(1)} \\ X_2^{(1)} \end{cases} = \begin{cases} X_1^{(1)} \\ (1/r_1)X_1^{(1)} \end{cases}$$

And
$$\vec{X}^{(2)} = \begin{cases} X_1^{(2)} \\ X_2^{(2)} \end{cases} = \begin{cases} X_1^{(2)} \\ (1/r_2)X_1^{(2)} \end{cases}$$

The vectors $\vec{X}^{(1)}$ and $\vec{X}^{(2)}$, which denote the normal mode of vibration are known as 'mode vectors' of the system.

Motion for mass m₁ can be written as

 $x_1(t) = x_1^{(1)}(t) + x_1^{(2)}(t)$; (motion with ω_1 and ω_2)

$$x_{1}(t) = X_{1}^{(1)} \cos(\omega_{1}t + \phi_{1}) + X_{1}^{(2)} \cos(\omega_{2}t + \phi_{2})$$

Motion for mass m₂ can be written as

 $x_2(t) = x_2^{(1)}(t) + x_2^{(2)}(t)$; (motion with ω_1 and ω_2)

$$x_2(t) = X_2^{(1)} \cos(\omega_1 t + \phi_1)$$

 $+ X_2^{(2)} \cos(\omega_2 t + \phi_2)$

If initial velocities are zero then

$$x_1 = X_1^{(1)} \cos \omega_1 t + X_1^{(2)} \cos \omega_2 t$$

$$x_2 = X_2^{(1)} \cos \omega_1 t + X_2^{(2)} \cos \omega_2 t$$

$$\frac{X_1^{(1)}}{X_2^{(1)}} = \left(\frac{X_1}{X_2}\right)_1$$
$$\frac{X_2^{(2)}}{X_2^{(2)}} = \left(\frac{X_1}{X_2}\right)_2$$

 $X_1^{(1)} + X_1^{(2)} = Initial displacement m_1$ $X_2^{(1)} + X_2^{(2)} = Initial displacement m_2$

Static And Dynamic Coupling in Vibration

Static Coupling- If non principle diagonal terms (K_{ij}) in K matrix are non-zero then system is said to be statically coupled.

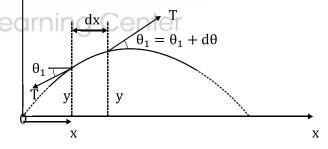
Dynamics Coupling- If non principle diagonal terms $(M_{ij} \, \text{or} \, C_{ij})$ in M and C matrix are non-zero then system is said to be dynamically coupled.

Chapter 5: VIBRATION OF CONTINUOUS SYSTEMS

Continuous system has infinite principal mode of vibration and have infinite natural frequencies. **Example:** Vibration of string, bar/rod, beam, shaft etc.

1. Vibrating String:

BY IIT/IISC GRADUATE



$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \quad \left(\text{putting, } c^2 \, = \frac{T}{\rho} \right)$$

$$rac{1}{r} c = \sqrt{\frac{T}{\rho}}$$

- = velocity of wave propagation
- →This equation is one- dimensional wave equation for lateral vibrations of string.

Sol for gov differential equation

$$y = XT$$

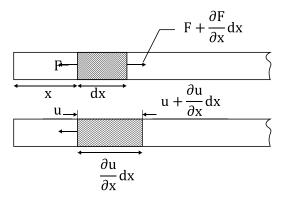
$$y = \sum_{i=1}^{\infty} \left(A_i \sin \frac{\omega_i}{c} x + B_i \cos \frac{\omega_i}{c} x \right) (C_i \sin \omega_i t + D_i \cos \omega_i t)$$

Above equation has 2 boundary Note: conditions and 2 initial conditions

For both ends fixed:

At
$$x = 0 \& L \rightarrow y = 0$$

$$\rightarrow \; \omega \; = \; \frac{n\pi}{L} \sqrt{\frac{T}{\rho}}$$



$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{1}{\mathbf{c}^2} \frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2}$$

rod '

Where,
$$c^2 = \frac{E}{\rho}$$
 or $c = \sqrt{\frac{E}{\rho}}$

c is the velocity of wave propagation in bar/

Longitudinal Vibration of a Bar:

Sol for gov differential equation

$$\begin{split} u &= XT \\ u &= \sum_{i=1}^{\infty} \Big(A_i \sin \frac{\omega_i}{c} x \, + \, B_i \, \cos \frac{\omega_i}{c} x \Big) \big(\, C_i \sin \omega_i t \big) \end{split}$$

+ $D_i \cos \omega_i t$)

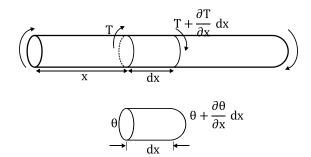
Boundary Conditions and Natural Frequencies:

Condition	Boundary Conditions	Frequency Equation	Mode Shape (Normal Function)	Natural Frequency
Free – Free	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}(0, \mathbf{t}) = 0$ $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}(1, \mathbf{t}) = 0$	$\sin\left(\frac{wl}{c}\right) = 0$	$u_n(x) = c_n \cos\left(\frac{n\pi x}{l}\right)$	$\omega_n = \frac{n\pi c}{l}, n$ $= 0, 1, 2,$
Fixed — Free	$u(0,t) = 0$ $\frac{\partial u}{\partial x}(l,t) = 0$	$\cos\left(\frac{\omega l}{c}\right) = 0$	$u_n(x)$ $= c_n \frac{(2n+1)\pi x}{2l}$	ω_{n} $= \frac{(2n+1)\pi c}{2l}$ $n = 0,1,2 \dots$
Fixed — Fixed	u(0,t) = 0 $u(l,t) = 0$	$\sin\left(\frac{\omega l}{c}\right) = 0$	$u_n(x)$ $= C_n \cos\left(\frac{n\pi c}{l}\right)$	$\omega_n = \frac{n\pi c}{l}$ $n = 1,2,3$

Initial Conditions are: $u(x, t = 0) = u_o(x)$

$$\frac{\partial u}{\partial t}\left(x,0\right)=\dot{u}_{t}(x,0)=\dot{u}_{o}(x)$$

3. Torsional Vibration of Shaft or Rod.



$$\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \theta}{\partial t^2}$$
Here, $c = \sqrt{\frac{G}{\rho}}$;

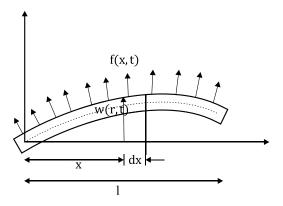
Sol for gov differential equation

$$\begin{aligned} \theta(x,t) &= X.T \\ \theta &= \sum_{i=1}^{\infty} \left(A_i \sin \frac{\omega_i}{c} x \right. \\ &+ B_i \cos \frac{\omega_i}{c} x \right) \left(C_i \sin \omega_i t \right. \\ &+ D_i \cos \omega_i t \right) \end{aligned}$$

Boundary Conditions:

Natural **Boundary Frequency** Condition **Mode Shape Conditions Equation** Frequency $\frac{\partial \theta}{\partial x}(0,t) = 0$ $\sin\left(\frac{\omega l}{c}\right) = 0 \quad \bigg| \quad = C_n \cos\left(\frac{n\pi x}{l}\right)$ Free - Free $\frac{\partial \theta}{\partial x} \left(l,t \right) = 0$ n = 0,1,2,... $\theta(0,t)=0$ $\cos\left(\frac{\omega l}{c}\right) = 0 \qquad = C_n \sin\left(\frac{(2n+1)\pi l}{2l}\right) = \frac{(2n+1)\pi c}{2l}$ $\frac{\partial \theta}{\partial x} (l, t) = 0$ Fixed - Free $\sin\left(\frac{\omega l}{c}\right) = 0 \qquad \theta(x)$ $= C_n \cos\left(\frac{n\pi x}{l}\right)$ $\omega_{\rm n} = \frac{n\pi c}{l}$ $\theta(0,t)=0$ $\theta(l,t) = 0$ Fixed – Fixed n = 1, 2, 3 ...

4. Lateral Vibration of Beam:



$$EI \frac{\partial^4 w}{\partial x^4} + \rho A \frac{\partial^2 w}{\partial t^2} = 0$$

0r

$$c^2 \frac{\partial^4 w}{\partial x^4} + \frac{\partial^2 w}{\partial t^2} = 0$$

$$c = \sqrt{\frac{EI}{\rho A}}$$

Sol for gov differential equation

$$\rightarrow w(x,t) = X(x).T(t)$$

2nd order derivative w.r.t. 'time.

$$w(t) = A \sin \omega t + B \cos \omega t$$

4th order derivative w.r.t 'x' displacement

$$w(x) = C_1 \cos \beta x + C_2 \cos h \beta x + C_3 \sin \beta x + C_4 \sin h \beta x$$

$$\beta = \sqrt{\frac{\omega}{c}}$$

w(x) — Normal mode or characteristic function of beam

ω – Natural frequency

Boundary Conditions

1. Free End:

Bending Moment =
$$EI \frac{\partial^2 w}{\partial x^2} = 0$$

Shear force
$$=\frac{\partial}{\partial x}\left(\mathrm{EI}\frac{\partial^2 w}{\partial x^2}\right)=0$$

2. Simply Supported:

$$Deflection = w = 0$$

Bending Moment = EI =
$$\frac{\partial^2 w}{\partial x^2}$$
 = 0

3. Fixed Ends:

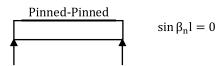
Slope =
$$\frac{\partial w}{\partial x} = 0$$

BY IIT/IISC GRADUATES

Learning Center

Beam with different supports

1. Simply - Simply Supported Beam



$$\beta L = n \pi$$

$$\omega = n^2 \pi^2 \frac{c}{L^2} = \frac{n^2 \pi^2}{L^2} \sqrt{\frac{EI}{\rho A}}$$

n = 1, first mode of vibration.

2. Cantilever Beam

$$(\cos \beta L) (\cos h\beta L) = -1$$

From above equation natural frequencies can be found

 $\beta L = 1.875104$

$$\omega = 1.875^2 \frac{c}{L^2} = \frac{1.875^2 \pi^2}{L^2} \sqrt{\frac{EI}{\rho A}}$$

3. Fixed-Fixed

$$(\cos \beta L) (\cos h\beta L) = 1$$

From above equation natural frequencies can be found

$$\beta L = 4.73$$

$$\omega = 4.73^2 \frac{c}{L^2} = \frac{4.73^2 \pi^2}{L^2} \sqrt{\frac{EI}{\rho A}}$$

 L^2 L^2 $\sqrt{\rho}$

CLASSES

EXCLUSIVE GATE COACHING BY IIT/IISC GRADUATES

A division of PhIE Learning Center

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

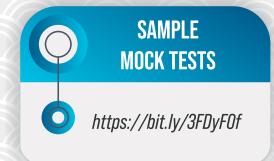
Topic Wise Tests

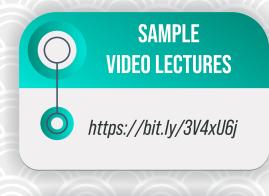
Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC





Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Admission Open for

GATE 2025/26

Live Interactive Classes

AEROSPACE ENGINEERING

