

Table Of Content

Fatigue Load	01
Welded Joint	03
Bolted Joint	04
Riveted Joint	04
Bearing	05
Gears (Spur Gear)	07
Brakes	08
Friction Clutches/Disc Brake	09

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

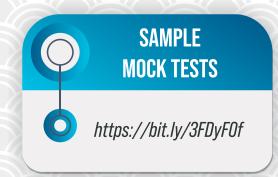
OUR COURSES

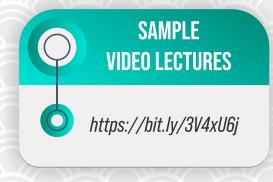
Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests


Module Wise Tests



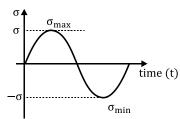
Complete Syllabus Tests

More About IGC

Follow us on:

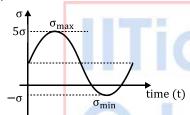
For more Information Call Us +91-97405 01604

Visit us

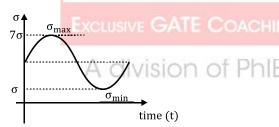

www.iitiansgateclasses.com

Machine Design

Chapter 1: FATIGUE LOAD

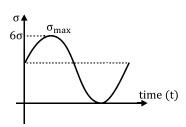

Types of Fatigue (cyclic) stresses

1.


Completely Reversed Stress

2.

Alternating Fatigue Stress


3.

Fluctuating Fatigue Stress

Eg: (Bicycle Spoke)

4

Repeated Fatigue Stress

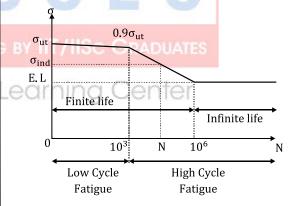
Eg: 1. IC Engine; 2. Gear

$$(\sigma_m) = \ \sigma_{mean} = \frac{\sigma_{max} + \sigma_{min}}{2}$$

$$(\sigma_v) = \sigma_{variable} = \frac{\sigma_{max} - \sigma_{min}}{2}$$

Stress Ratio (R) =
$$\frac{\sigma_{min}}{\sigma_{max}}$$

Amplitude ratio (A) =
$$\frac{\sigma_v}{\sigma_m} = \frac{1 - R}{1 + R}$$


NOTE: Fatigue test is conducted

under completely reversed stress

condition.

$$\begin{pmatrix} \sigma_{\text{mean}} = 0, \sigma_{\text{v}} = \sigma_{\text{max}}, \\ R = -1, A \to \infty \end{pmatrix}$$

S-N Curve for Steel and Ti Specimen:

E.L = Endurance Limit

N = No. of Revolution

If $\sigma_{ind} \leq E.L \rightarrow Infinite life (\geq 10^6 cycles)$

If $\sigma_{\text{ind}} > E$. L \rightarrow finite life (10³ to 10⁶ cycles)

$$\sigma_{e} = \sigma_{e}^{*} \, K_{a} \, K_{b} \, K_{c} \, K_{d} \, K_{g}$$

 $\sigma_e^* = E$. L of a standard specimen

 $K_a = Size factor$

 $K_b = Surface finish factor$

 K_c = Reliability factor

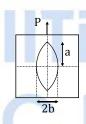
$$K_d = \frac{1}{K_f}$$

$$\boxed{K_{\rm f} = 1 + q(K_{\rm t} - 1)}$$

$$0 \le q \le 1$$

 $K_g = load factor$

 $K_g = 1$ for CRS(Completely reversed

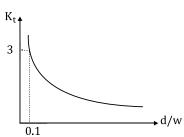

Bending load)

 $K_g = 0.577$ for torsional loading

 $K_g = 0.8$ for axial loading

Theoretical stress concentration factor (K_t)

$$K_t = \frac{\sigma_{max}}{\sigma_{nominal}}$$

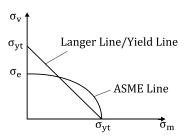

$$K_t = 1 + 2 \left(\frac{b}{a}\right)$$

K_f (Fatigue concentration factor)

 $K_f = \frac{E. L \text{ without stress concentration}}{E. L. \text{ with stress concentration}}$

q (Notch sensitivity factor)

$$\mathrm{q} = \frac{\mathrm{K_f} - 1}{\mathrm{K_t} - 1}$$


d= diameter of hole


w= width of plate

if
$$\frac{d}{w} < 0.1$$

then $K_t = 3$

If K_t value not given then assume $K_t = 1$

$$\frac{\sigma_{m}}{\sigma_{yt}} + \frac{\sigma_{v}}{\sigma_{e}} = \frac{1}{FOS} \begin{pmatrix} \text{Soderberg line equation} \\ \text{(For Ductile material)} \end{pmatrix}$$

$$\boxed{\frac{\sigma_{v}}{\sigma_{e}} + \frac{\sigma_{m}}{\sigma_{ut}} = \frac{1}{FOS}} \left(\begin{array}{c} Goodman \; equation \\ (For \; Brittle \; material) \end{array} \right)$$

$$\frac{\sigma_v}{\sigma_e} + \frac{\sigma_m}{\sigma_{ut}} \equiv \frac{1}{FOS}$$
 Adjustes

- (Modified Goodman)

$$\frac{\sigma_{\rm v}}{\sigma_{\rm yt}} + \frac{\sigma_{\rm m}}{\sigma_{\rm yt}} = \frac{1}{\rm FOS} -$$

$$\sigma_e = \frac{\sigma_e^* K_a K_b \dots}{K_f}$$

 $\sigma_m = K_t \times \sigma_m^* \text{ (for Brittle material)}$

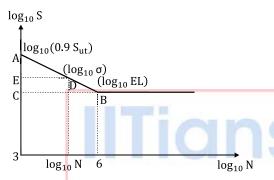
$$\left(\frac{\sigma_{v}}{\frac{\sigma_{e}}{FOS}}\right) + \left(\frac{\sigma_{m}}{\frac{\sigma_{ut}}{FOS}}\right)^{2} = 1 \Rightarrow \text{Gerber line}$$

$$\left(\frac{\sigma_{\rm v}}{\sigma_{\rm e}}\right)^2 + \left(\frac{\sigma_{\rm m}}{\sigma_{\rm yt}}\right)^2 = \frac{1}{({\rm FOS})^2}$$

⇒ ASME ellipsed equation

$$\frac{\sigma_{v}}{\sigma_{yt}} + \frac{\sigma_{m}}{\sigma_{yt}} = \frac{1}{FOS} \Rightarrow Langer Line$$

FOS= Factor of safety


Note:

1. If combined load acting on member $\left(\tau_{eq} \text{ and } \sigma_{eq}\right) then$

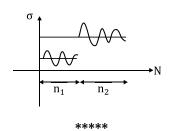
$$\begin{split} (\sigma_{mean})_{eq} &= \sqrt{\sigma_m^2 + 3\tau_m^2} \\ (\sigma_v)_{eq} &= \sqrt{\sigma_v^2 + 3\tau_v^2} \end{split} \right\} \begin{array}{l} \text{MDET} \\ \text{Theory} \end{split}$$

2. Surface Roughness $\uparrow \Rightarrow$ Cracks $\uparrow \Rightarrow$ E. L $\downarrow \Rightarrow K_h \downarrow$

$$log S - log N$$
 graph $\binom{Design for}{finite life}$

 $\sigma_e = EL = Endurance strength/limit$

$$\frac{\log_{10}(0.9 \text{ S}_{\text{ut}}) - \log_{10} \sigma_{\text{e}}}{6 - 3}$$


$$= \frac{\log_{10}(\sigma) - \log_{10}\sigma_{e}}{6 - \log_{10}N}$$

Cumulative damage in fatigue (Miner's Equation):

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \dots = 1$$

 $N_1 = \text{No.}$ of stress cycle before fatigue failure when σ_1 acting alone

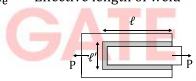
 $N_2 = No.$ of stress cycle before fatigue failure when σ_2 acting alone

Chapter 2: WELDED JOINT

In GATE Questions

Leg of weld will be given (always) t

$$h = \frac{t}{\cos \theta + \sin \theta}$$


h = throat thickness

Area of fillet weld = $h l_e$

$$l_e = \ell \text{ (SFWJ)}$$

$$l_e = 2\ell \text{ (DFWJ)}$$

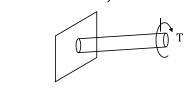
 $l_e = Effective length of weld$

w = Width of plate

t = Thinkness of plate

- 1. $P = \sigma_t (w \times t) \rightarrow Strength of plate$
- 2. P_1 = Parallel fillet joint strength (After welding)

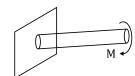
$$P_1 = 2 \times \tau \times (0.707 \times t \times \ell)$$


3. P_2 = Transverse fillet weldd joint strength.

$$P_2 = \sigma_{t_1}(0.707 \times t \times \ell')$$

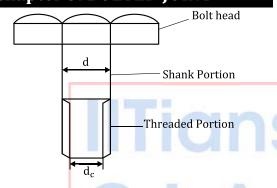
in place of σ_{t_1} , τ is used in Gate questions

4.
$$P = P_1 + P_2$$


Circular fillet welded joint under torsion.

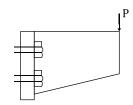
$$\tau = \frac{T}{2\pi r^2 h} \quad \boxed{h = \frac{t}{\sqrt{2}}}$$

GATE-ME-QUICK REVISION FORMULA SHEET


 $\tau = \frac{2.83 \; T}{\pi d^2 t} \;\; t = leg \; of \; the \; weld \;\;$

$$(\sigma_b)_{max} = \frac{5.66 \text{ M}}{\pi d^2 t}$$

Chapter 3: BOLTED JOINT


$$d = \frac{d_c}{0.84}$$

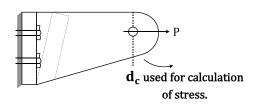
d =Major/Nominal diameter

 $d_c = Core diameter | SIVE GATE COACH$

Eccentric Loaded Bolted Joint:

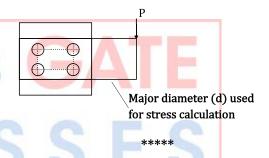
Case A: dc used for stress calculation

$$\tau_s = \frac{\frac{P}{n}}{\frac{\pi}{4} d_c^2}$$


$$(\sigma_{t})_{max} = \frac{(P_{t})_{max}}{\frac{\pi}{4} d_{c}^{2}}$$

$$\frac{S_{yt}}{2(FOS)} = \tau_{per} = \frac{1}{2} \sqrt{(\sigma_t)_{max}^2 + 4\tau_s^2}$$

From above equation core diameter (d_c) will be known


Case B:

primary and secondary tensile stresses induced.

Case C:

Primary and Secondary shear stress induced

Chapter 4: RIVETED JOINT

Riveted Joint

Case(i) b(width) is given,

1. Tearing Strength of a Rivet:

$$P_t = (b - n_R d_h) t \sigma_t$$

 n_R = No. of rivets in a row

N = Total No. of rivets in a plate

d_h = Diameter of hole(d+clearance)

d = Diameter of rivet

 σ_t = permissibile tensile stress

2. Shear strength of a Rivet:

$$P_s = N \times K \times \frac{\pi}{4} d^2 \times \tau_{per}$$

K = No. of shear

K = 1 for single strap

K = 2 for Double strap

 τ_{per} = Permissibile shear stress

3. Crushing Strength of Rivet:

$$P_c = N d t (\sigma_c)_{per}$$

t = Thickness of plate

permissible crushing stress

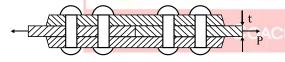
Strength of Rivet =
$$\frac{1}{N} \begin{pmatrix} \text{Minimum of} \\ P_s \text{ and } P_c \end{pmatrix}$$

Stength of solid plate w/o Rivet

$$P_{solid} = b \times t \times (\sigma_t)_{per}$$

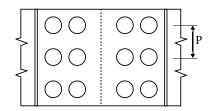
$$\eta_{riveted} = \frac{Minimum \ of \ (P_s, P_c, P_t)}{P_{solid}} \times 100$$

$$\eta_{tearing} = \frac{P_t}{P_{solid}} \times 100$$

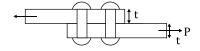


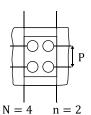
$$P_t = (P - d_h)t \sigma_t$$

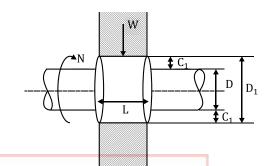
$$P_c = n \times d \times t \times \sigma_c$$


$$P_s = n \times k \times \frac{\pi}{4} d^2 \times \tau_{per}$$

n = No. of Rivets/Pitch


Double riveted double strap butt joint

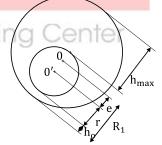

$$n = 2, k = 2$$


N = 6

Lap Joint

Chapter 5: BEARING

L = length of Journal


D = Diameter of journal or shaft

 $D_1 = Diameter of bearing$

 $C_1 = Radial clearance = R_1 - R$

 $C_d = C = Diametral clearance C = 2C_1$

 $p = Bearing pressure = \frac{W}{L \times D}$

$$R_1 = r + h_0 + e$$

$$R_1 - r = h_0 + e$$

$$C_1 = R_1 - R = h_o + e$$

$$e = C_1 - h_0$$

e = eccentricity

ε(Eccentricity ratio @ Attitude of bearing)

$$=\frac{\mathrm{e}}{\mathrm{C}_1}=1-\frac{\mathrm{h}_{\mathrm{o}}}{\mathrm{C}_1}$$

μ(Coefficient of friction)

$$= 0.326 \left(\frac{ZN}{p}\right) \left(\frac{D}{C_d}\right) + k$$

 $N(in rpm); p(in N/m^2)$

Z = Viscosity in Pa sec

$$k = 0.002 \text{ if } 0.75 \le \frac{L}{D} \le 2.8$$

$$k = 0.003 \text{ if } \frac{L}{D} > 2.8$$

Sommerfield No: (no unit)

$$= \frac{\mathrm{Z}\;\mathrm{N}}{\mathrm{p}} \left(\frac{\mathrm{D}}{\mathrm{C}_{\mathrm{d}}}\right)^2$$

$$\mu = 2\pi^2 \left(\frac{Z N_s}{p}\right) \left(\frac{r}{C}\right)$$
 (Pettroff equation)

this is used when e = 0

Power loss due to friction $(Q_g) = \mu WV =$

μWrω

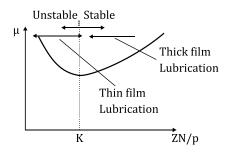
Heat generated due to firction (Qg)

 $\omega = \text{angular velocity}$ GALE COACH

r =radius of journal

W = weight on Journal

 Q_d = Heat dissipated


$$= C_d \times L \times D_1(t_b - t_a)$$

 $t_b = Bearing temperature$

 $t_o = atmosphere temperature$

If $Q_g \leq Q_d \rightarrow Natural$ cooling

 $Q_g > Q_d \rightarrow Artificial cooling$

Note:

$$\frac{ZN}{p} > K \text{ (always)}$$

K = Bearing modulus

$$3K \le \frac{ZN}{p} \le 5K$$
 for static load

$$13K \le \frac{ZN}{p} \le 15K$$
 for fatigue/Impact load

$$\frac{ZN}{p}$$
 = Bearing characterstics number

Rolling Contact Bearing:

SKF 6310

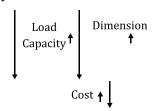
First number: Types of Bearing

 $3 \rightarrow \text{tappered roller}$

4 → needle roller

 $5 \rightarrow Cylindrical roller$

6 → Deep groove


SKF 3: Duty Series

 $1 \rightarrow \text{extra light}$

 $2 \rightarrow light series$

3 → Medium series

4 → Heavy series

Stribeck's Equation:

Static load Capacity/Rating

$$(C_o) = \frac{kzd^2}{5} \binom{Ball}{bearing} \text{ or } \frac{k(zL)d}{5} \binom{Roller}{Bearing}$$

z = No. of balls

d = diameter of rolling element

 $k=\mbox{constant}$ depends on modulus of elasticity of material and radius of curvature of contacting surface

Dynamic Load Rolling (C):

Load on bearing which gives 1 million (10^6) revolution.

Life of bearing (Load – Life Equation)

$$L_{90} = \left(\frac{C}{P_0}\right)^n \text{ million revolution}$$

n = 3 for BB

$$n = \frac{10}{3} \text{ for RB}$$

A division of PhIE

 Ω r

$$L_H \times N \times 60 = \left(\frac{C}{P_e}\right)^n \times 10^6$$

C = Dynamic load rating (Given by manufacturer)

$$P_{e} = C_{s}(XVF_{r} + YF_{a})$$

 C_s = Service factor

 F_r = radial load

 $F_a = Axial load$

V = 1 for inner race rotation

V = 1.2 outer race rotation

Relation between Life and Reliability:

$$\frac{L}{L_{90}} = \left(\frac{\ln\left(\frac{1}{R}\right)}{\ln\left(\frac{1}{R_{90}}\right)}\right)^{1/1.17}$$

BB → Ball bearing

RB → Roller bearing

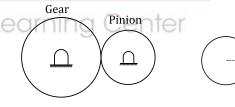
For Bearing Under Cyclic Loading:

$$P_{e} = \left(\frac{P_{e_{1}}^{n} \cdot n_{1} + P_{e_{2}}^{n} n_{2} + \cdots}{n_{1} + n_{2} + \cdots}\right)^{1/n}$$

Note: Load on bearing not on shaft

 $n_1 = N \times time$

 $n_1 = No.$ of revolutions


n = 3 for BB

$$n = \frac{10}{3} \text{ for RB}$$

Chapter 6: GEARS (SPUR GEAR)

Gears (Spur Gear):

Design of gear tooth is based on bending moment. So GRADUATES

Gear Design (Steps):

According to Beam strength (F_b)

1. If material is same, then design for pinion.

If material is different, then design for weaker

$$((\sigma_b)_{per} \cdot Y)_{gear}$$
 and $((\sigma_b)_{per} Y)_{pinion}$

Smaller of these will be considered for design.

2. Find Beam Strength

$$F_{t_{\text{max}}} = F_{b} = (\sigma_{b})_{\text{per}} b m Y$$

 $(\sigma_b)_{per} = \text{Permissible bending stress at}$

tooth root due to F_t (tangential load)

b = Face width

m = Module

Y = Lewis form factor or tooth geometry factor

$$Y = \pi \left(0.154 - \frac{0.912}{Z} \right)$$

for
$$\phi = 20^{\circ}$$

 ϕ = pressure angle

Z = No. of teeth

3. $F_{dynamic}$ load Calculation:

$$F_{dynamic} = F_{actual}$$

$$= F_{\text{static}} \times C_{V} \times S \times FOS$$

Power =
$$\frac{2\pi NT}{60}$$

For safety $F_{dynamic} \le (F_t)_{max}$

$$F_{static} = \frac{2T}{D}$$

$$F_{\text{static}} \times C_{V} \times S \times FOS \leq b \text{ m Y } (\sigma_{b})_{\text{per}}$$

 $C_V = Velocity factor$

S = service factor

above equation is used when $C_{V}>1$

$$C_{V} = \frac{3+V}{3} \text{ for } V \le 10 \text{ m/sec}$$
$$= \frac{6+V}{V}, \text{ for } V > 10 \text{ m/sec}$$

$$=\frac{(5.6+\sqrt{V})}{5.6}$$
 for $V > 20$ m/sec

$$S = C_s = \frac{Starting\ torque}{rated\ torque}$$

4. According to wear strength of tooth (F_w)

$$F_w = D_p Q K b$$

 $D_p = Diameter of pinion$

$$Q = Ratio factor = \frac{2G}{G+1}$$

+ For external gear

for internal gear

K = Material combination factor

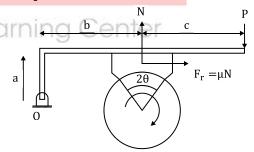
$$K = \frac{\sigma_e^2 \sin \varphi}{1.4} \left(\frac{1}{E_p} + \frac{1}{E_g} \right)$$

 $E_p, E_g = Young's modulus for gear & pinion$

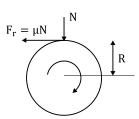
٥r

$$K = 0.16 \left(\frac{BHN}{100} \right)^2$$

Used when both gears are made of steel


and
$$\phi = 20^{\circ}$$

For safety $F_{act} \le F_{wear}(F_w)$

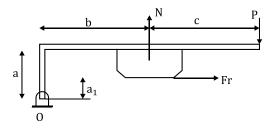


Chapter 7: BRAKES

A. Simple Shoe Brake

P = applied force

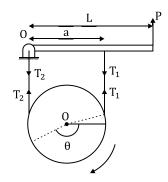
 T_f = Frictional torque


$$T_f = F_r \times R$$

R = Radius of wheel

$$\sum M_o = 0$$

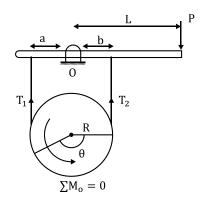
 $F_r = Friction force$


$$P(b + c) + Fr(a_1) = N(b)$$

$$P = \frac{N(b) - \mu N(a_1)}{b + c}$$

Note:

- When applied force moment is acting in the same direction of friction force moment then Brake ⇒ self-energizing brake.
- 2. When P = 0 Self locked brake When P < 0 uncontrollable braking When P > 0 controllable braking
- 3. When $2\theta > 45^{\circ}$ Then $\mu' = \frac{4\mu \sin \theta}{2\theta + \sin 2\theta}$


B. Simple Band Brake:

$$\begin{aligned} &\frac{T_1}{T_2} = e^{\mu\theta} \\ &T_f = (T_1 - T_2)R \\ &\sum M_0 = 0 \end{aligned}$$

$$T_1(a) = P(L)$$

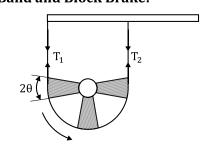
C. Differential Band Brake:

$$\frac{T_1}{T_2} = e^{\mu\theta}$$

$$\sum M_o = 0$$

$$T_1(a) = T_2(b) + P(L)$$

$$T_{\rm f} = (T_1 - T_2)R$$


$$Pressure = \frac{T}{Rw}$$

$$P_{\text{max}} = \frac{T_1}{Rw}$$

$$P_{\min} = \frac{T_2}{Rw}$$

w = width of band

D. Band and Block Brake:

$$\frac{T_1}{T_2} = \left(\frac{1 + \mu \tan \theta}{1 - \mu \tan \theta}\right)^n$$

$$T_{\rm f} = (T_1 - T_2)R$$

$$n = No.$$
 of Block

Chapter 8: FRICTION CLUTCHES /DISC BRAKE

Friction Clutches/Disc Brakes

New Brake (Uniform pressure theory):

$$p=\frac{W}{\pi(r_2^2-r_1^2)}$$

$$T_f = \mu W R_m$$

$$R_{\rm m} = \frac{2}{3} \left(\frac{r_2^3 - r_1^3}{r_2^2 - r_1^2} \right)$$

• Old Brake:(uniform wear theory)

$$p = \frac{W}{2\pi(r_2-r_1)r}$$

$$T_f = \mu W R_m$$

$$R_{\rm m} = \frac{r_1 + r_2}{2}$$

Where p = pressure; $T_f = Friction torque$ W = axial thrust with which the friction surfaces are held together above formulas are for single pairing surface, for n pairs multiply T_f by 'n'

Cone Clutch:

$$T_f = \mu \left(\frac{W_a}{\sin \alpha}\right) R_m$$
 Redivision of PhIE Learning Center

$$R_{\rm m} = \frac{2}{3} \left(\frac{r_2^3 - r_1^3}{r_2^2 - r_1^2} \right)$$
 (UPT)

$$R_{\rm m} = \frac{r_1 + r_2}{2} \qquad (UWT)$$

 α =Half of cone angle

$$n = n_1 + n_2 - 1$$

No. of effective pairs of surfaces

Centrifugal Clutch:

$$T_f = n \mu N R$$

Where n = No. of shoes

$$N = mr_g(\omega_2^2 - \omega_1^2)$$

 ω_1 = Speed at which shoes just touches the rim

R = Rim radius

 $r_g = radius of shoe centre$

 $N = P_a(l b)$

 $p_a = pressure$

l, b = Dimension of friction lining

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

Visit us www.iitiansgateclasses.com