

GATE

PREVIOUS YEARS QNS & ANSWER KEYS

ENGINEERING MATHEMATICS

AEROSPACE ENGINEERING

Subjective Presentation | Thoroughly Revised & Updated

www.iitiansgateclasses.com

ENGINEERING MATHEMATICS

CONTENTS

Questions	06 - 21
Answer Keys	24

OUR ACHIEVERS

GATE-2024 AE

K SUNIL
IIST TRIVANDRUM
AIR - 2

ASHWIN K
ACHARYA INSTITUTE, B'LORE
AIR - 6

MIT, CHENNAI

AIR - 9

VIGNESH CG IIST TRIVANDRUM AIR - 11

ADITYA ANIL KUMAR IIST TRIVANDRUM AIR - 17

And Many More

GATE-2023 AE

SRIRAM R
SSN COLLEGE CHENNAI
AIR - 2

Akriti PEC, Chandigarh AIR - 6

SHREYASHI SARKAR IIEST, SHIBPUR AIR - 8

YOKESH K MIT, CHENNAI AIR - 11

HRITHIK S PATIL
RVCE, BANGALORE
AIR - 14

And Many More

GATE-2022 AE

SUBHROJYOTI BISWAS IIEST, SHIBPUR AIR - 4

SANJAY. S AMRITA UNIV, COIMBATORE AIR - 7

AKILESH . G Hits, Chennai AIR - 7

D. MANOJ KUMAR AMRITA UNIV, COIMBATORE AIR - 10

DIPAYAN PARBATIIEST, SHIBPUR **AIR - 14**

And Many More

OUR PSU JOB ACHIEVERS

HAL DT ENGINEER 2023

S.S Sanjay

Amrita Univ - Coimbatore

Shashi Kanth M

Sastra Univ - Tanjore

Vagicharla Dinesh

Lovely Professional Univ - Punjab

Anantha Krishan A.G

Amrita Univ - Coimbatore

HAL DT ENGINEER 2022

Fathima J

MIT - Chennai

Mohan Kumar H

MVJCE - Bangalore

HAL DT ENGINEER 2021

Arathy Anilkumar Nair

Amrita Univ - Coimbatore

Sadsivuni Tarun

Sastra Univ - Tanjore

DRDO & ADA Scientist B

Job Position for Recruitment (2021-23) Based on GATE AE score

Ajitha Nishma V

IIST - Trivendrum

Abhilash K

Amrita Univ - Coimbatore

F Jahangir

MIT - Chennai

Goutham KCG College - Chennai

Mohit Kudal

RTU - Kota

Niladhari Pahari

IIEST - Shibpur

Shruti S Rajpara

IIEST - Shibpur

Dheeraj Sappa

IIEST - Shibpur

M Kumar

MVJ College - Bangalore

Nitesh Singh

Sandip Univ - Nashik

RAM GOPAL SONI

GVIET - PUNJAB

Ramanathan A

Amrita Univ - Coimbatore

DGCA Air Safety & Worthiness Officer

Job Position for Recruitment (2023)

Abhishek Shukla

FGIET - Raebareli

Ayush Boral

KIIT - Bhubaneswar

R Selvaraj

Sri Ramakrishna College - Coimbatore

Uttam Kumar Maurya

UPES - Dehradun

Aishwarya PS

BMS College - Bangalore

Dhiraj Rajendra Kapte

Priyadarshini College - Nagpur

Rithik Gowda M

ACS College - Bangalore

Anil Kumar Nakkala

Malla Reddy College - Hyderabad

Govardhan K

RVCE - Bangalore

Samhit Sumnampa

PEC - Chandigarh

Thirthankar Majumdar

Amity University - Noida

GET-ESS-AIESL 2023

S Komesh

Sathyabama University - Chennai

Shrenith Suhas

IIEST - Shibpur

Ankur Vats

School Of Aeronautics - Neemrana

GATE AE - 2007

One Mark Questions.

- 1. If $f(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then $f(\alpha)f(\beta) = \frac{\sin \theta}{\cos \theta}$
 - (A) $f(\alpha/\beta)$
- (C) $f(\alpha \beta)$
- (B) $f(\alpha + \beta)$
- (D) 2×2 zero matrix
- 2. The Euler iteration formula for numerically integrating a first order nonlinear differential equation of the form $\dot{x}=f(x)$, with a constant step size of Δt is
 - (A) $x_{k+1} = x_k \Delta t \times f(x_k)$
 - (B) $x_{k+1} = x_k + (\Delta t^2/2) \times f(x_k)$
 - (C) $x_{k+1} = x_k (1/\Delta t) \times f(x_k)$
 - (D) $x_{k+1} = x_k + \Delta t \times f(x_k)$
- 3. The minimum Value of
 - $J(x) = x^2 7x + 30$ occurs at
 - (A) x = 7/2
- (C) x = 30/7
- (B) x = 7/30
- (D) x = 30

Two Marks Questions.

- 4. Let P and Q be two square matrices of same size. Consider the following statements
 - (i) PQ = 0 implies P = 0 or Q = 0 or both
 - (ii) $PQ = I^2$ implies $P = Q^{-1}$
 - (iii) $(P + Q)^2 = P^2 + 2PQ + Q^2$
 - (iv) $(P-Q)^2 = P^2 2PQ + Q^2$

Where I is the identity matrix. Which of the following statements is correct?

- (A) (i), (ii) and (iii) are false, but (iv) is true
- (B) (i), (ii) and (iv) are false, but (iii) is true
- (C) (ii), (iii) and (iv) are false, but (i) is true
- (D) (i), (iii) and (iv) are false, but (ii) is true

5. The eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} are$$

- (A) 1 and 2
- (C) 2 and 3
- (B) 1 and 4
- (D) 2 and 4
- 6. The eigenvalues of the matrix A^{-1} ,

where
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$
, are

- (A) 1 and 1/2
- (C) 2 and 3
- (B) 1 and 1/3
- (D) 1/2 and 1/3
- 7. Let a system of linear equations be as follows:

$$x - y + 2z = 0$$

$$2x + 3y - z = 0$$

$$2x - 2y + 4z = 0$$

This system of equations has

- (A) No non-trivial solution
- (B) Infinite number of non-trivial solutions
- (C) An unique non-trivial solution
- (D) Two non-trivial solutions
- An athlete starts running with a speed V_0 . Subsequently, his speed decreases by an amount that is proportional to the distance that he has already covered. The distance covered will be
- (A) Linear in time
- (B) Quadratic in time
- (C) Exponential in time
- (D) Logarithmic in time
- 9. At a stationary point of a multi-variable function, which of the following is true?
 - (A) Curl of the function becomes unity
 - (B) Gradient of the function vanishes
 - (C) Divergence of the function vanishes
 - (D) Gradient of the function is maximum

10. Numerical value of the integral

$$J = \int_0^1 \frac{1}{1 + x^2} \, dx$$

If evaluated numerically using the Trapezoidal rule with dx = 0.2 would be

- (A) 1
- (C) 0.7837
- (B) $\pi/4$
- (D) 0.2536
- The Newton-Raphson iteration formula to find 11. a cube root of a positive number c is

(A)
$$x_{k+1} = \frac{2x_k^3 + \sqrt[3]{c}}{3x_k^2}$$
 (C) $x_{k+1} = \frac{2x_k^3 + c}{3x_k^2}$

(C)
$$x_{k+1} = \frac{2x_k^3 + c}{3x_k^2}$$

(B)
$$x_{k+1} = \frac{2x_k^3 - \sqrt[3]{c}}{-3x_k^2}$$
 (D) $x_{k+1} = \frac{x_k^3 + c}{3x_k^2}$

(D)
$$x_{k+1} = \frac{x_k^3 + c}{3x_k^2}$$

- $\lim_{x\to 0} \sin x / e^x x$ 12.
 - (A) 10
- (B) 0
- Let a dynamical system be described by the 13. differential equation $2\frac{dx}{dt} + \cos x = 0$ Which of the following differential equations describes this system in a close approximation sense for small perturbation about $x = \pi/4$?

(A)
$$2\frac{dx}{dt} + \sin x = 0$$
 (C) $\frac{dx}{dt} + \cos x = 0$

(C)
$$\frac{dx}{dt} + \cos x = 0$$

(B)
$$2\frac{dx}{dt} - \frac{1}{\sqrt{2}}x = 0$$
 (D) $\frac{dx}{dt} + x = 0$ ACHING

(D)
$$\frac{\mathrm{dx}}{\mathrm{dt}} + x = 0$$

Statement for Linked Answer Qns 14 & 15:

Let
$$F(s) = \frac{(s+10)}{(s+2)(s+20)}$$

- The partial fraction expansion of F(s) is 14.

(A)
$$\frac{1}{s+2} + \frac{1}{s+20}$$
 (C) $\frac{2}{s+2} + \frac{20}{s+20}$
(B) $\frac{5}{s+2} + \frac{2}{s+20}$ (D) $\frac{4/9}{s+2} + \frac{5/9}{s+20}$

(B)
$$\frac{5}{s+2} + \frac{2}{s+20}$$

(D)
$$\frac{4/9}{s+2} + \frac{5/9}{s+20}$$

- The inverse Laplace transform of F(s) is 15.
 - (A) $2e^{-2t} + 20e^{-20t}$ (C) $5e^{-2t} + 2e^{-20t}$

 - (B) $\frac{4}{9}e^{-2t} + \frac{5}{9}e^{-20t}$ (D) $\frac{9}{4}e^{-2t} + \frac{6}{5}e^{-20t}$

GATE AE - 2008

One Mark Questions.

- 16. The function defined by
 - $f(x) = \sin x$, x < 0

- = 0.x = 0 $=3x^3, x>0$
- (A) is neither continuous nor differentiable at
- (B) is continuous and differentiable at x=0
- (C) is differentiable but not continuous at x=0
- (D) is continuous but not differentiable at x=0
- 17. The product of the eigenvalues of the matrix

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & -3 \end{bmatrix}$$
 is

- (B) 0
- (D) -9
- 18. Which of the following equations is a LINEAR ordinary differential equation?

(A)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + 2y^2 = 0$$

(B)
$$\frac{d^2y}{dx^2} + y\frac{dy}{dx} + 2y = 0$$

(C)
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + 2y = 0$$

(D)
$$\left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} + 2y = 0$$

Two Marks Questions.

- The function $f(x, y, z) = \frac{1}{2} x^2 y^2 z^2$ satisfies
- (A) grad f = 0

19.

- (B) div(grad f) = 0
- (C) $\operatorname{curl}(\operatorname{grad} f) = 0$
- (D) grad(div(grad f)) = 0
- 20. Which of the following is true for all choices of vectors \vec{p} , \vec{q} , \vec{r} ?
 - (A) $\vec{p} \times \vec{q} + \vec{q} \times \vec{r} + \vec{r} \times \vec{p} = 0$
 - (B) $(\vec{p} \cdot \vec{q})\vec{r} + (\vec{q} \cdot \vec{r})\vec{p} + (\vec{r} \cdot \vec{p})\vec{q} = 0$
 - (C) $\vec{p} \cdot (\vec{q} \times \vec{r}) + \vec{q} \cdot (\vec{r} \times \vec{p}) + \vec{r} \cdot (\vec{p} \times \vec{q}) = 0$
 - (D) $\vec{p} \times (\vec{q} \times \vec{r}) + \vec{q} \times (\vec{r} \times \vec{p}) + \vec{r} \times (\vec{p} \times \vec{q}) = 0$
- The value of the line integral $\frac{1}{2\pi} \oint (x \, dy y \, dx)$ 21. taken anticlockwise along a circle of unit radius
 - (A) 0.5
- (C) 2
- (B) 1
- (D) π

22. Which of the following is a solution of

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0?$$

- (A) $e^{-x} + xe^{-x}$

- (B) $e^x + xe^{-x}$ (D) $e^{-x} + xe^{x}$
- 23. Suppose the non-constant functions F(x) and $G(t) \quad \text{ satisfy } \quad \frac{d^2F}{dx^2} + p^2F = 0, \\ \frac{dG}{dt} + c^2p^2G = 0, \\$ where p and c are constants. Then the function u(x,t) = F(x)G(t) definitely satisfies
 - $(A)\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$
- $(B)\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = c^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2}$
- $(D)\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} + \mathbf{c}^2 \mathbf{u}^2 = 0$
- 24. The following set of equations

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \text{ has }$$

- (B) a unique solution
- (C) two solutions
- (D) infinite solutions
- The function $f(x) = x^2 5x + 6$ 25.
 - (A) has its maximum value at x = 2.0
 - (B) has its maximum value at x = 2.5
 - (C) is increasing on the interval (2.0, 2.5)
 - (D) is increasing on the interval (2.5, 3.0)

- (A) $\frac{(b-a)}{2} \left[f(b) + f\left(\frac{a+b}{2}\right) \right]$
- (B) $\frac{(b-a)}{2} \left[\frac{f(a)+f(b)}{2} + f\left(\frac{a+b}{2}\right) \right]$
- (C) $\frac{(b-a)}{2} \left[\frac{f(a) + f(b)}{3} + \frac{4}{3} f(\frac{a+b}{2}) \right]$
- (D) $\frac{(b-a)}{2} \left| \frac{f(a) + f(b)}{3} + \frac{4}{3} f(\frac{a+b}{3}) \right|$
- 28. The percentage error (with respect to the exact solution) in estimation of the integral $\int_0^1 x^3 dx$ using Simpson's rule is
 - (A) 5.3
- (C) 2.8
- (B) 3.5
- (D) 0

GATE AE - 2009

One Mark Questions.

29. The ordinary differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + ky = 0$$

where k is real and positive

- (A) is non-linear
- (B) has a characteristic equation with one real and one complex root
- (C) has a characteristic equation with two real roots
- has a complementary function that is (D) simple harmonic
- Let Y(s) denote the Laplace transform L(y(t))26. of the function $y(t) = \cos h(at) \sin(at)$. Then

(A)
$$L\left(\frac{dy}{dt}\right) = \frac{dY}{ds}$$
, $L(ty(t)) = sY(s)$

(B)
$$L\left(\frac{dy}{dt}\right) = sY(s), L(t y(t)) = -\frac{dY}{ds}$$

(C)
$$L\left(\frac{dy}{dt}\right) = \frac{dY}{ds}$$
, $L(t y(t)) = Y(s-1)$

(D)
$$L\left(\frac{dy}{dt}\right) = sY(s), L(ty(t)) = e^{as}Y(s)$$

30. A non-trivial solution to the $(n \times n)$ system of equations $[A]{x} = {0}$, where ${0}$ is the null vector

- (A) can never be found
- (B) may be found only if [A] is not singular
- (C) may be found only if [A] is an orthogonal matrix
- (D) may be found only if [A] has at least one eigenvalue equal to zero

Statement for Linked Answer Questions 27

- & 28: The following two questions relate to Simpson's rule for approximating the integral $\int_{a}^{b} f(x) dx$ on the interval [a, b]
- 27. Which of the following gives the correct formula for Simpson's rule?

Two Marks Questions.

- The value of the integral $\int_0^{\pi} \frac{dx}{1+x+\sin x}$ evaluated 31. using the trapezoidal rule with two equal intervals is approximately
 - (A) 1.27
- (C) 1.41
- (B) 1.81
- (D) 0.71

(A) 20

(B) 24

32.

- (A) π
- (C) 0
- (B) 1
- (D) 4π

33. In the interval $1 \le x \le 2$, the function f(x) =

The product of the eigenvalues of the matrix

(C) 9

(D) 17

38. The magnitude of the component of \vec{A} normal to the spherical surface at the point $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ is

 $e^{\pi x} + \sin \pi x$ is

- (A) 1/3
- (C) 3/3

(B) 2/3

39.

(D) 4/3

(A) maximum at x = 1

(B) maximum at x = 2

- (C) maximum at x = 1.5(D) monotonically decreasing
- The inverse Laplace transform of F(s) =34. $\frac{(s+1)}{(s+4)(s-3)}$ is

 - (A) $\frac{3}{7}e^{4t} + \frac{4}{7}e^{-3t}$ (C) $\frac{5}{7}e^{-4t} + \frac{6}{7}e^{3t}$
 - (B) $\frac{3}{7}e^{-4t} + \frac{4}{7}e^{3t}$ (D) $\frac{5}{7}e^{4t} + \frac{6}{7}e^{-3t}$
- The linear system of equations Ax = b where 35.
 - $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \text{ and } b = \begin{Bmatrix} 3 \\ 3 \end{Bmatrix} \text{ has}$
 - (A) no solution
 - (B) infinitely many problems
 - (C) a unique solution $x = \begin{cases} 1 \\ 1 \end{cases}$
 - (D) a unique solution $x = \begin{cases} 0.5 \\ 0.5 \end{cases}$

GATE AE - 2010 One Mark Questions.

- Two position vectors are indicated by \overline{V}_1 = $\begin{Bmatrix} X_1 \\ V_1 \end{Bmatrix}$ and $\overline{V}_2 = \begin{Bmatrix} X_2 \\ V_2 \end{Bmatrix}$. If $a^2 + b^2 = 1$, then the operation $\overline{V}_2 = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \overline{V}_1$ amounts to obtaining the position vector \overline{V}_2 from \overline{V}_1 by
 - (A) translation
- (B) rotation
- (C) magnification
- (D) combination of translation, rotation and magnification.
- The linear second order partial differential

$$5\frac{\partial^2 \Phi}{\partial x^2} + 3\frac{\partial^2 \Phi}{\partial x \partial y} + 2\frac{\partial^2 \Phi}{\partial y^2} + 9 = 0$$

- The correct iterative scheme for finding the 36. square root of a positive real number R using the Newton Raphson method is
- (A) Parabolic
- (B) Hyperbolic
- (C) Elliptic
- (D) None of the above

- $(A) x_{n+1} = \sqrt{R}$ (B) $x_{n+1} = \frac{1}{2} \left(x_n + \frac{R}{x_n} \right)$
- (C) $x_{n+1} = \frac{1}{2} (\sqrt{x_n} + \sqrt{x_{n-1}})$
- (D) $x_{n+1} = \frac{1}{2} (\sqrt{R} + x_n)$

- 41. The eigen-values of a real symmetric matrix are always
 - (A) Positive
 - (B) imaginary
 - (C) real
 - (D) complex conjugate pairs

Common Data for Questions 37 and 38

- Consider the vector field $\overrightarrow{A} = (y^3 + z^3)\hat{i} +$ $(x^3 + z^3)\hat{j} + (x^3 + y^3)\hat{k}$ defined over the unit sphere $x^{2} + y^{2} + z^{2} = 1$
- 37. The surface integral (taken over the unit sphere) of the component of \overrightarrow{A} normal to the surface is
- 42. The concentration x of a certain chemical species at time t in a chemical reaction is described by the differential equation $\frac{dx}{dt}$ +

kx = 0, with $x(t = 0) = x_0$. Given that e is the of the natural logarithms, concentration x at t = l/k

- (A) falls to the value $0.5x_0$
- (B) rises to the value $2x_0$
- (C) falls to the value x_0/e
- (D) rises to the value ex_0
- 43. The definite integral

$$\int_{-1}^{+1} dx/x^2$$

- (A) does not exist
- (C) is equal to 0
- (B) is equal to 2
- (D) is equal to -2

Two Marks Questions.

44. Given that the Laplace transform of y(t) = $e^{-t}(2\cos 2t - \sin 2t)$ is $Y(s) = \frac{2s}{(s+1)^2+4^2}$ Laplace transform of

$$y_t(t) = e^t(2\cos 2t - \sin 2t)$$
 is

(A)
$$\frac{2(s-2)}{(s-1)^2+4}$$
 (C) $\frac{2(s+2)}{(s+1)^2+4}$

(C)
$$\frac{2(s+2)}{(s+1)^2+4}$$

(B)
$$\frac{2(s+2)}{(s+3)^2+4}$$

45.

(B)
$$\frac{2(s+2)}{(s+3)^2+4}$$
 (D) $\frac{2(s-1)}{(s-1)^2+4}$

shapes $z(x,y) = \frac{1}{50} x^4 + y^2 - xy - 3y$, where the axes x and y are in the horizontal plane and axis z points vertically upward. If î, î and k are unit vectors along x, y and z respectively, then at the point x = 5, y = 10 the unit vector in the direction of the steepest slope of the hill will be

In a certain region a hill is described by the

- (A) î
- (C) k
- (B) ĵ
- (D) $\hat{i} + \hat{j} + \hat{k}$
- The function $f(x,y) = x^2 + y^2 xy 3y$ has an 46. extremum at the point
 - (A) (1, 2)
- (C) (2,2)
- (B) (3,0)
- (D) (1, 1)
- In finding a root of the equation: $x^2 6x + 5 =$ 47. 0 the Newton-Raphson method achieves an order of convergence equal to:

- (A) 1.0
- (C) 2.0
- (B) 1.67
- (D) 2.5
- 48. If e is the base of the natural logarithms then the equation of the tangent from the origin to the curve $y = e^x$ is
 - (E) y = x
- (G) y = x/e
- (F) $y = \pi x$
- (H) y = ex

GATE AE - 2011

One Mark Questions.

- 49. Consider x,y,z to be right-handed Cartesian coordinates. A vector function is defined in this coordinate system as $v = 3xi + 3xyj - yz^2k$, where i, j and k are the unit vectors along x, y and z axes, respectively. The curl of v is given by
 - (A) $z^2i 3yk$
- (C) $z^2i + 3yi$
- (B) $z^2j + 3yk$
- (D) $-z^2i + 3yk$
- 50. Which of the following functions is periodic?
 - (A) $f(x) = x^2$
- (C) $f(x) = e^x$
- (B) $f(x) = \log x$
- (D) f(x) = const.
- The function $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 2x_1 x_2^2 + x_3^2 2x_1 x_2^2 + x_3^2 x_3^2 x_3^2 + x_3^2 x_3^2 x_3^2 + x_3^2 x_3^2$ $4x_2 - 6x_3 + 14$ has its minimum value at
 - (C) (3, 2, 1) (A) (1, 2, 3)
 - (B) (0,0,0)
- (D) (1, 1, 3)
- 52. Consider the function $f(x_1, x_2) = x_1^2 + 2x_2^2 +$ $e^{-x_1-x_2}$. The vector pointing in the direction of maximum increase of the function at the point (1, -1) is

 - (A) $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$ (C) $\begin{pmatrix} -0.73 \\ -6.73 \end{pmatrix}$ (B) $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ (D) $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$
- 53. Two simultaneous equations given by $y = \pi +$ x and $y = x - \pi$ have
 - (A) a unique solution
 - (B) infinitely many solutions
 - (C) no solution
 - (D) a finite number of multiple solutions

Previous Years Questions & Answer Keys: AE

Two Marks Questions.

- 54. Consider the function $f(x) = x - \sin(x)$. The Newton-Raphson iteration formula to find the root of the function starting from an initial guess $x^{(0)}$ at iteration k is
 - (A) $x^{(k+1)} = \frac{\sin x^{(k)} x^{(k)} \cos x^k}{1 \cos x^{(k)}}$
 - (B) $x^{(k+1)} = \frac{\sin x^{(k)} x^{(k)} \cos x^k}{1 + \cos x^{(k)}}$
 - (C) $x^{(k+1)} = \frac{\sin x^{(k)} + x^{(k)} \cos x^k}{1 \cos x^{(k)}}$
 - (D) $x^{(k+1)} = \frac{\sin x^{(k)} + x^{(k)} \cos x^k}{1 + \cos x^{(k)}}$
- Consider the matrix $\begin{bmatrix} 2 & a \\ b & 2 \end{bmatrix}$ where a and b are 55. real numbers. The two eigenvalues of this matrix λ_1 and λ_2 are real and distinct $(\lambda_1 \neq \lambda_2)$ when
 - (A) a < 0 and b > 0
- (C) a < 0 and b < 0
- (B) a > 0 and b < 0
- (D) a = 0 and b = 0
- The solution of $\frac{dy}{dt} = y^3 e^t t^2$ with initial 56. condition y(0) = 1 is given by
 - $(A)^{\frac{1}{0}} e^{t} (t+3)^{2}$

 - $(C)\frac{4e^t}{(t+2)^2}$
 - (D) $\frac{1}{5-2e^{t}(t^{2}-2t+2)}$

GATE AE - 2012

One Mark Questions.

- 57. The constraint $A^2 = A$ on any square matrix A is satisfied for
 - (A) the identity matrix only.
 - (B) the null matrix only.
 - (C) both the identity matrix and the null matrix.
 - (D) no square matrix A.

- 58. The general solution of the differential equation $\frac{d^2y}{dt^2} + \frac{dy}{dt} - 2y = 0 \text{ is}$
- (A) $Ae^{-t} + Be^{2t}$ (C) $Ae^{-2t} + Be^{t}$ (B) $Ae^{-2t} + Be^{-t}$ (D) $Ae^{t} + Be^{2t}$
- 59. The value of k for which the system of equations x + 2y + kz = 1; 2x + ky + 8z = 3has no solution is
 - (A) 0
- (B) 2
- (C) 4
- (D) 8
- 60. If u(t) is a unit step function, the solution of the $\mbox{differential} \quad \mbox{equation} \quad \mbox{m} \frac{\mbox{d}^2 x}{\mbox{d} t^2} + k x = u(t) \quad \mbox{in} \quad \label{eq:equation}$ Laplace domain is
 - $(A)\frac{1}{s(ms^2+k)} \qquad (C)\frac{s}{ms^2+k}$

 - (B) $\frac{1}{\text{ms}^2 + \text{k}}$ (D) $\frac{1}{\text{s}^2(\text{ms}^2 + \text{k})}$
- The general solution of the differential 61.
 - $\frac{dy}{dx} 2\sqrt{y} = 0 \text{ is}$ (A) $y \sqrt{x} + C = 0$ (C) $\sqrt{y} \sqrt{x} + C = 0$
- GATE COACHING BY y-x+C=0 (D) $\sqrt{y}-x+C=0$

- (B) $\sqrt{\frac{9}{5+2e^t(t^2-2t+2)}}$ Two Marks questions.

 (B) $\sqrt{\frac{9}{5+2e^t(t^2-2t+2)}}$ The integration $\int_0^1 x^3 dx$ computed using trapezoidal rule with n = 4 intervals is ____.
 - 63. The nth derivative of the function $y = \frac{1}{x+3}$ is
 - $(A)\frac{(-1)^n n!}{(x+3)^{n+1}}$
- $(C)\frac{(-1)^{n}(n+1)!}{(x+3)^{n}}$
- (B) $\frac{(-1)^{n+1}n!}{(x+3)^{n+1}}$ (D) $\frac{(-1)^n n!}{(x+3)^n}$
- 64. The volume of a solid generated by rotating the region between semi-circle $y = 1 - \sqrt{1 - x^2}$ and straight-line y = 1, about x axis, is
 - (A) $\pi^2 \frac{4}{3}\pi$ (C) $\pi^2 \frac{3}{4}\pi$
 - (B) $4\pi^2 \frac{1}{3}\pi$ (D) $\frac{3}{4}\pi^2 \pi$

65. eigenvalue of the matrix

$$\begin{bmatrix} 2 & 7 & 10 \\ 5 & 2 & 25 \\ 1 & 6 & 5 \end{bmatrix}$$
 is -9.33. One of the other

eigenvalues is

- (A) 18.33
- (C) 18.33 9.33i
- (B) -18.33
- (D) 18.33 + 9.33i

GATE AE - 2013

One Mark Questions.

66. The directional derivative of the function

$$f(x,y) = \frac{x^2 + xy^2}{\sqrt{5}}$$
 in the direction

$$\vec{a} = 2\hat{i} - 4\hat{j}$$
 at $(x, y) = (1, 1)$ is

- $(A) \frac{1}{\sqrt{5}}$
- (B) $-\frac{2}{\sqrt{5}}$
- 67.

The value of
$$\int_{4}^{5} \frac{x+2}{x^2+4x-21} dx \text{ is}$$
(E) $\ln \sqrt{24/11}$ (G) I

- (G) $\ln \sqrt{2}$
- (F) $\ln \sqrt{12/11}$
- (H) ln(12/11)
- At x = 0 the function y = |x| is 68.

 - (B) continuous and differentiable
 - (C) not continuous but differentiable
 - (D) not continuous and not differentiable
- 69. One of the eigenvectors of the matrix

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \text{ is } v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

The corresponding eigenvalue is ___

Two Marks Questions. Let $I = \iint_S (y^2 z\hat{i} + z^2 x\hat{j} + x^2 y\hat{k}) (x\hat{i} + y\hat{j} + x^2 y\hat{k})$ 70. zk)dS, where S denotes the surface of the

sphere of unit radius centered at the origin. Here î, î and k denote three orthogonal unit

vectors. The value of I is_

71. Given that the Laplace transform

$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$
 then $\mathcal{L}(3e^{5t} \sin h 5t) =$

- $(A)\frac{3s}{s^2 10s}$
- $(C)\frac{3s}{s^2 + 10s}$
- (B) $\frac{15}{s^2 10s}$
- Values of a, b and c, which render the matrix 72.

$$Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & a \\ 1/\sqrt{3} & 0 & b \\ 1/\sqrt{3} & -1/\sqrt{2} & c \end{bmatrix}$$

orthonormal are, respectively

- $(A)\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0$
- (B) $\frac{1}{\sqrt{6}}$, $-\frac{2}{\sqrt{6}}$, $\frac{1}{\sqrt{6}}$
- (C) $-\frac{1}{\sqrt{3}}$, $-\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$
- (D) $-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}$
- A function y(t) satisfies the differential 73. equation $\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = 0$ and is subject to the initial conditions y(t = 0) = 0 and $\frac{dy}{dt}(t = 0) =$
 - 1. The value of y(t = 1) is
 - (A) e
- (C)
- (B) 0
- (D) -1

GATE AE - 2014

One Mark Questions.

For a real symmetric matrix [A], which of the following statements is true:

- (A) The matrix is always diagonalizable and invertible.
- The matrix is always invertible but not necessarily diagonalizable.
- (C) The matrix is always diagonalizable but not necessarily invertible.
- (D) The matrix always neither diagonalizable nor invertible.
- The series 75.

$$s = \sum_{m=1}^{\infty} \frac{m^2}{3^m} (x - 2)^m$$

converges for all x with $|x-2| \le R$ given by

- (A) R = 0
- (C) $R = \infty$
- (B) R = 3
- (D) R = 1/3

A division of PhIE Learning Center

- 76. The function given by
 - $f(x) = \begin{cases} \sin(1/x) & x \neq 0 \\ 0, & x = 0 \end{cases}$
 - (A) Unbounded everywhere
 - (B) Bounded and continuous everywhere
 - (C) Bounded but not continuous at x = 0
 - (D) Continuous and differentiable everywhere
- 77. Given the boundary-value problem

$$\frac{d}{dx}\left(x\frac{dy}{dx}\right) + ky = 0.0 < x < 1, \text{ with}$$

y(0) = y(1) = 0. Then the solutions of the boundary-value problem for k = 1 (given by y_1) and k = 5(given by y_5) satisfy:

(A)
$$\int_0^1 y_1 y_5 dx = 0$$

(B)
$$\int_{0}^{1} \frac{dy_{1}}{dx} \frac{dy_{5}}{dx} dx = 0$$
(C)
$$\int_{0}^{1} y_{1} y_{5} dx \neq 0$$

(C)
$$\int_{1}^{1} y_{1}y_{5}dx \neq 0$$

(D)
$$\int_0^1 \left(y_1 y_5 + \frac{dy_1}{dx} \frac{dy_5}{dx} \right) dx = 0$$

- The value of $I = \int_0^1 1000x^4 dx$, obtained by 78. using Simpson's rule with 2 equally spaced intervals is,
 - (A) 200 (C) 180 (A) (A)

A division of PhIE L

Two Marks Questions. If $[A] = \begin{bmatrix} 3 & -3 \\ -3 & 4 \end{bmatrix}$. 79.

Then $\det(-[A]^2 + 7[A] - 3[I])$ is

- (A) 0
- (C) 324
- (B) -324
- (D) 6
- 80. For the periodic function given by

$$f(x) = \begin{cases} -2, & -\pi < x < 0 \\ 2, & 0 < x < \pi \end{cases} \text{ with } f(x + 2\pi) =$$

f(x), using Fourier series, the sum

$$s = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
 converges to

- (B) $\pi/3$
- (D) $\pi/5$
- 81. Let Γ be the boundary of the closed circular region A given by $x^2 + y^2 \le 1$. Then I =

 $\int_{\mathbb{R}} (3x^3 - 9xy^2) ds$ (where ds means integration along the bounding curve) is

- (A) π
- (C) 1
- (B) $-\pi$
- (D) 0
- 82. Solution to the boundary-value problem

$$-9\frac{d^2u}{dx^2} + u = 5x, 0 < x < 3 \text{ with } u(0) = 0,$$

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}}\Big|_{\mathbf{x}=3} = 0$$

(A)
$$u(x) = \frac{15e}{1+e^2} (e^{-x/3} - e^{x/3}) + 5x$$

(B)
$$u(x) = \frac{15e}{1 + e^2} (e^{-x/3} + e^{x/3}) + 5x$$

(C)
$$u(x) = -\frac{15\sin(x/3)}{\cos(1)} + 5x$$

(D)
$$u(x) = -\frac{15\sin(\frac{x}{3})}{\cos(1)} - \frac{5}{54}x^3$$

- The Laplace transform L(u(t)) = U(s), for the 83. solution u(t) of the problem $\frac{d^2u}{dt^2} + 2\frac{du}{dt} + u =$
 - 1, t > 0 with initial conditions $u(0) = 0, \frac{du(0)}{dt} =$

5 is given by:

- (C) $\frac{1-5s}{s(s+1)^2}$ (D) $\frac{5s^2+1}{s(s+1)^2}$

GATE AE - 2015

One Mark Questions.

84. The partial differential equation

$$\frac{\partial u}{\partial t} + \frac{\partial \left(\frac{u^2}{2}\right)}{\partial x} = 0 \text{ is }$$

- (A) linear and first order
- (B) linear and second order
- (C) non-linear and first order
- (D) non-linear and second order
- 85. The system of equations for the variables x and y ax + by = e; cx + dy = f

has a unique solution only if

- (A) $ad bc \neq 0$
- (C) $a+c \neq b+d$
- (B) $ac bd \neq 0$
- (D) $a c \neq b d$

- The function $y = x^3 x$ has 86.
 - (A) no inflection point
 - (B) one inflection point
 - (C) two inflection points
 - (D) three inflection points

Two Marks Questions.

- In the solution of $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = 0$, if the 87. values of the integration constants are identical and one of the initial conditions is specified as y(0) = 1, the other initial condition $y'(0) = \underline{\hspace{1cm}}$.
- For x > 0, the general solution of the 88. equation differential asymptotically approaches_
- For a parabola defined by $y = ax^2 + bx + c$, $a \ne$ 89. 0, the coordinates (x, y) of the extremum are
 - (A) $\left(\frac{-b}{2a} + \frac{\sqrt{b^2 4ac}}{2a}, 0\right)$
 - (B) $\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{2a}\right)$
 - (C) $\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{-4a}\right)$ VE GATE COACHING BY
 - (D)(0,c)

90. If all the eigenvalues of a matrix are real and equal, then

- (A) the matrix is diagonalizable
- (B) its eigenvectors are not necessarily linearly independent
- (C) its eigenvectors are linearly independent
- (D) its determinant is necessarily zero
- 91. The value of the integral

$$\int_{1}^{2} (4x^{3} + 3x^{2} + 2x + 1) dx$$

evaluated numerically using Simpson's rule with one step is

- (A) 26.5
- (C) 25.5
- (B) 26
- (D) 25.3

GATE AE - 2016

One Mark Questions.

- 92. Consider an eigenvalue problem given by Ax = $\lambda_i \mathbf{x}$. If λ_i represent the eigenvalues of the nonsingular square matrix A, then what will be the eigenvalues of matrix A²?
 - (A) λ_i^4
- (C) $\lambda_i^{1/2}$
- (B) λ_i^2
- (D) $\lambda_{:}^{1/4}$
- 93. If **A** and **B** are both non-singular $n \times n$ matrices, then which of the following statement is NOT TRUE. Note: det represents the determinant of a matrix.
 - (A) det(AB) = det(A)det(B)
 - (B) $det(\mathbf{A} + \mathbf{B}) = det(\mathbf{A}) + det(\mathbf{B})$
 - (C) $\det(AA^{-1}) = 1$
 - (D) $det(A^T) = det(A)$
- 94. Let x be a positive real number. The function $f(x) = x^2 + 1/x^2$ has its minima at x =___.
 - The vector $\vec{\mathbf{u}}$ is defined $\vec{\mathbf{u}} = \mathbf{y}\hat{\mathbf{e}}_{\mathbf{x}} \mathbf{x}\hat{\mathbf{e}}_{\mathbf{y}}$, where $\hat{\mathbf{e}}_{\mathbf{x}}$ and \hat{e}_y are the unit vectors along x and y directions, respectively. If the vector $\vec{\omega} =$ $\overrightarrow{\nabla} \times \overrightarrow{\mathbf{u}}$, then $|(\overrightarrow{\omega} \cdot \overrightarrow{\nabla})\overrightarrow{\mathbf{u}}| = \underline{\phantom{\mathbf{u}}}$
- A division of PhIE Learning Center

 96. The partial differential equation $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$ where α is a positive constant, is
 - (A) circular.

95.

- (C) hyperbolic.
- (B) elliptic.
- (D) parabolic.

Two Marks Questions.

- 97. Consider a second order linear ordinary differential equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0.$ with the boundary conditions $y(0) = 1; \frac{dy}{dx} \Big|_{x=0} = 1$. The value of y at x = 1 is
 - (A) 0
- (C) e
- (B) 1
- (D) e^2

the Strum-Liouville problem

are given by:

 $0, \pm 1, \pm 2 \dots \infty$

The eigenvalues λ_n and eigenfunctions $u_n(x)$ of

 $\frac{d^2y}{dv^2} + k^2\lambda y = 0, 0 < x < 1; \ y(0) = 0, y(1) = 0$

98. Consider the following system of linear equations:

$$2x - y + z = 1$$

$$3x - 3y + 4z = 6$$

$$x - 2y + 3z = 4$$

This system of linear equations has

- (A) no solution.
- (B) one solution.
- (C) two solutions.
- (D) three solutions.
- 99. The value of definite integral

$$\int_0^{\pi} (x \sin x) dx \text{ is } \underline{\hspace{1cm}}.$$

(B) $\lambda_n = n^2 \pi^2 / k^2$; $u_n(x) = \sin kn\pi x$, n = $0, \pm 1, \pm 2 \dots \infty$

(A) $\lambda_n = n^2 \pi^2$; $u_n(x) = \sin \lambda_n x$, n =

- (C) $\lambda_n = n^2 \pi^2 / k^2$; $u_n(x) = \sin n\pi x$, n = $0, \pm 1, \pm 2 \dots \infty$
- (D) $\lambda_n = n^2 \pi^2$; $u_n(x) = \sin n\pi x$, n = $0, \pm 1, \pm 2 \dots \infty$
- Use Newton-Raphson method to solve the 100. equation: $x e^x = 1$. Begin with the initial guess $x_0 = 0.5$. The solution after one step is x=
- 105. 3-point Gaussian integration formula is given by

$$\int_{-1}^{1} f(x) dx \approx \sum_{j=1}^{3} A_{j} f(x_{j})$$

with
$$x_1 = 0, x_2 = -x_3$$

$$=-\sqrt{\frac{3}{5}}$$
; $A_1=\frac{8}{9}$, $A_2=A_3=\frac{5}{9}$.

This formula exactly integrates

(A)
$$f(x) = 5 - x^7$$

(B)
$$f(x) = 2 + 3x + 6x^4$$

(C)
$$f(x) = 13 + 6x^3 + x^6$$

(D)
$$f(x) = e^{-x^2}$$

GATE AE - 2017

One Mark Questions.

Given the vectors $\vec{\mathbf{v}}_1 = \hat{\mathbf{i}} + 3\hat{\mathbf{j}}; \vec{\mathbf{v}}_2 = 2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} +$ 101. $3\hat{k}$, the vector \vec{v}_3 that is perpendicular to both \vec{v}_1 and \vec{v}_2 is given by

(A)
$$\vec{v}_3 = \vec{v}_1 - (\vec{v}_1 \cdot \vec{v}_2) \frac{\vec{v}_2}{|\vec{v}_2|}$$

(B)
$$\vec{v}_3 = \hat{k}$$

(C)
$$\vec{\mathbf{v}}_3 = \vec{\mathbf{v}}_2 - (\vec{\mathbf{v}}_1 \cdot \vec{\mathbf{v}}_2) \frac{\vec{\mathbf{v}}_1}{|\vec{\mathbf{v}}_1|}$$

(D)
$$\vec{\mathbf{v}}_3 = \frac{\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2}{|\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2|}$$

- 102. The value of the integral $I = \int_{C} ((x-y)dx +$ x^2 dy). With C the boundary of the square $0 \le$ $x \le 2$; $0 \le y \le 2$, is _____.
- 103. Let $\overline{v(t)}$ be a unit vector that is a function of the parameter t. Then $\vec{v} \cdot \frac{d\vec{v}}{dt} = \underline{\hspace{1cm}}$

Two Marks Questions.

Matrix [A] = $\begin{bmatrix} 2 & 0 & 2 \\ 3 & 2 & 7 \\ 2 & 1 & 5 \end{bmatrix}$ and vector $\{b\} = \begin{cases} 4 \\ 4 \\ 5 \end{cases}$ 106.

> are given. If vector $\{x\}$ is the solution to the system of equations $[A]{x} = {b}$, which of the following is true for $\{x\}$:

- (A) Solution does not exist
- (B) Infinite solutions exist
- (C) Unique solution exists
- (D) Five possible solutions exist

- 107. Let matrix $[A] = \begin{bmatrix} 2 & -6 \\ 0 & 2 \end{bmatrix}$. Then for any nontrivial vector $\{x\} = {x_1 \brace x_2}$, which of the following is true for the value of $K = \{x\}^T [A] \{x\}$:
 - (A) K is always less than zero
 - (B) K is always greater than zero
 - (C) K is non-negative
 - (D) K can be anything
- Consider the initial value problem: 108.

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 6y = f(t); y(0) = 2, \left(\frac{dy}{dt}\right)_{t=0} = 1$$

If $Y(s) = \int_0^\infty y(t)e^{-st} dt$ and F(s) =

 $\int_0^\infty f(t)e^{-st} dt$ are the Laplace transforms of y(t) and f(t) respectively, then Y(s) is given by:

- (A) $\frac{F(s)}{(s^2 + 4s + 6)}$ (C) $\frac{F(s)}{(-s^2 + 4s + 6)}$ (B) $\frac{F(s) + 2s + 9}{(s^2 + 4s + 6)}$ (D) $\frac{F(s) 2s + 9}{(s^2 + 4s + 6)}$
- 109. Let u(x, t) denote the displacement of point on a rod. The displacement satisfies the following equation of motion:

$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{r}^2} - 25 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2} = 0, 0 < \mathbf{x} < 1 \text{ ATE COACHING BY I}$

With $u(x, 0) = 0.01 \sin(10 \pi x)$, $\frac{\partial u}{\partial t}(x, 0) = 0$; u(0, t) = 0, u(1, t) = 0. The value of u(0.25, 1)is _____ (in three decimal places)

- 110. The equation $x^2 \frac{d^2y}{dx^2} + 5x \frac{dy}{dx} + 4y = 0$ has a solution y(x) that is:
 - (A) A polynomial in x
 - (B) Finite series in terms of non-integer fractional powers of x
 - (C) Consists of negative integer powers of x and logarithmic function of x
 - (D) Consists of exponential functions of x.

GATE AE - 2018

One Mark Questions.

- Let \vec{a}, \vec{b} be two distinct vectors that are not parallel. The vector $\vec{c} = \vec{a} \times \vec{b}$ is
 - (A) zero.
 - (B) orthogonal to \vec{a} alone.
 - (C) orthogonal to $\vec{a} + \vec{b}$
 - (D) orthogonal to \vec{b} alone.
- 112. Consider the function

$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{3} - 5.$$

All the roots of this function

- (A) form a finite set of points.
- (B) lie on an elliptical curve.
- (C) lie on the surface of a sphere.
- (D) lie on a hyperbolic curve.
- 113. Consider a vector field given by $x\hat{i} + y\hat{j} + z\hat{k}$. This vector field is
 - (A) divergence-free and curl-free.
 - (B) curl-free but not divergence-free.
 - (C) divergence-free but not curl-free.
 - (D) neither divergence-free nor curl-free.

- The determinant of the matrix
 - $\begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$ is ____ (accurate to one decimal place).

Two Marks Questions.

115. The solution of the differential equation

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} = 0, \text{ given that } y = 0 \text{ and } \frac{dy}{dx} = 1$$

- (A) $x(1 e^{-3x})$ (C) $\frac{1}{3}(1 + e^{-3x})$
- (B) $\frac{1}{2}(1 e^{-3x})$ (D) $\frac{1}{2}xe^{\frac{-3x}{2}}$
- 116. Consider the vector field $\vec{v} = -\frac{y}{r^2}\hat{i} + \frac{x}{r^2}\hat{j}$; where $r = \sqrt{x^2 + y^2}$. The contour integral $\oint \vec{v} \cdot$ \overrightarrow{ds} , where \overrightarrow{ds} is tangent to the contour that

Previous Years Questions & Answer Keys: AE

encloses the origin, is _____ (accurate to two decimal places).

GATE AE - 2019 One Mark Questions.

- 117. The maximum value of the function $f(x) = xe^{-x}$ (where x is real) is
 - (A) 1/e
- (C) $(e^{-1/2})/2$
- (B) $2/e^2$
- (D) ∞
- 118. Vector \vec{b} is obtained by rotating $\vec{a} = \hat{i} + \hat{j}$ by 90° about \hat{k} , where \hat{i} , \hat{j} and \hat{k} are unit vectors along the x, y and z axes, respectively. \overrightarrow{b} is given by
 - (A) $\hat{i} \hat{j}$
- (C) $\hat{i} + \hat{j}$
- (B) $-\hat{i} + \hat{j}$
- (D) $-\hat{i} \hat{j}$
- 119. A scalar function is given by $f(x,y) = x^2 + y^2$. Take î and ĵ as unit vectors along the x and y axes, respectively. At (x, y) = (3,4), the direction along which f increases the fastest is

 - (A) $\frac{1}{5}$ (4î 3ĵ) (C) $\frac{1}{5}$ (3î + 4ĵ)

 - (B) $\frac{1}{5}(3\hat{\imath} 4\hat{\jmath})$ (D) $\frac{1}{5}(4\hat{\imath} + 3\hat{\jmath})$
- 127. For the function $f(x) = \frac{e^{-\lambda}}{\sigma\sqrt{2\pi}}$

where $\lambda = \frac{1}{2\sigma^2}(x-\mu)^2$ and σ and μ are The value of $\int_{-1}^{1} f(x)dx$ is _____ constants, the maximum occurs at

- (A) $x = \sigma$
- (C) $x = 2\sigma^2$
- (B) $x = \sigma\sqrt{2\pi}$
- (D) $x = \mu$

The value of the following limit is (round off to 2 decimal places).

120. A function f(x) is defined by $f(x) = \frac{1}{2}(x + |x|)$.

$$\lim_{\theta \to 0} \frac{\theta - \sin \theta}{\theta^3}$$

Two Marks Questions.

122. The following system of equations

(round off to 1 decimal place)

$$2x - y - z = 0,$$

$$-x + 2y - z = 0$$

$$-x - y + 2z = 0$$

- (A) has no solution.
- (B) has a unique solution.
- (C) has three solutions.
- (D) has an infinite number of solutions.

- 123. For real x, the number of points of intersection between the curves y = x and $y = \cos x$ is _____.
- One of the eigenvalues of the following matrix is 1. $\begin{pmatrix} x & 2 \\ -1 & 3 \end{pmatrix}$ The other eigenvalue is _____.
- 125. The curve y = f(x) is such that its slope is equal to y² for all real x. If the curve passes through (1, -1), the value of y at x = -2 is _____(round off to 1 decimal place).

GATE AE - 2020

One Mark Questions.

For f(x) = |x|, with $\frac{df}{dx}$ denoting the derivative,

the mean value theorem is not applicable because

- (A) f(x) is not continuous at x = 0
- (B) f(x) = 0 at x = 0
- (C) $\frac{df}{dx}$ is not defined at a x = 0
- (D) $\frac{df}{dx} = 0 \text{ at } x = 0$
- 128. $y = Ae^{mx} + Be^{-mx}$, where A, B and m are constants, is a solution of

(A)
$$\frac{d^2y}{dx^2} - m^2y = 0$$

(A)
$$\frac{d^2y}{dx^2} - m^2 y = 0$$
 (C) $B\frac{d^2y}{dx^2} + Ay = 0$

(B)
$$A \frac{d^2y}{dx^2} + m^2 y = 0$$
 (D) $\frac{d^2y}{dx^2} + my = m^2$

$$(D) \frac{d^2y}{dx^2} + my = m^2$$

- 129. Given $A = \begin{pmatrix} \sin \theta & \tan \theta \\ 0 & \cos \theta \end{pmatrix}$, the sum of squares of eigenvalues of A is
 - (A) $tan^2 \theta$
- (C) $\sin^2 \theta$
- (B) 1
- (D) $\cos^2 \theta$

Two Marks Questions.

- 130. The equation $x \frac{dx}{dy} + y = c$, where c is a constant, represents a family of
 - (A) Exponential curves
 - (B) Parabolas
 - (C) Circles
 - (D) Hyperbola
- 131. A closed curve is expressed in parametric form as $x = a \cos \theta$ and $y = b \sin \theta$, where a = 7 m and b = 5 m. Approximating $\pi = 22/7$ which of the following is the area enclosed by the curve?
 - (A) 110 m^2
- (C) 35 m^2
- (B) 74 m^2
- (D) 144 m^2
- 132. In the equation

$$Ax = B, A = \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \end{bmatrix}$$

$$x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ -\sqrt{2} \end{bmatrix}$$
, where A is an orthogonal

matrix, the sum of the unknowns, x + y + z =____ (round off to one decimal place).

133. If $\int_{1}^{0} (x^2 - 2x + 1) dx$ is evaluated numerically using trapezoidal rule with four intervals, the difference between the numerically evaluated value and the analytical value of the integral is equal to ___ (round off to three decimal places)

GATE AE - 2021

One Mark Questions.

- 134. Consider the differential equation $\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0$ and the boundary conditions y(0) = 1 and y'(0) = 0. The solution to this equation is
 - (A) $y = (1 + 2x)e^{-4x}$
 - (B) $y = (1 4x)e^{-4x}$
 - (C) $y = (1 + 8x)e^{-4x}$
 - (D) $y = (1+4)e^{-4x}$

135. u(x,y) is governed by the following equation

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} - 4 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}} + 6 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \mathbf{x} + 2\mathbf{y}$$

The nature of this equation is:

- (A) linear
- (C) hyperbolic
- (B) elliptic
- (D) parabolic
- 136. $\lim_{x \to 0} \left(\frac{1}{\sin x} \frac{1}{x} \right) =$ (Round off to nearest integer).
- 137. Given that ς is the unit circle in the counter-clockwise direction with its center at origin, the integral $\oint_{\varsigma} \frac{z^3}{4z-i} dz =$ _____ (round off to three decimal place)

Two Marks Questions.

138. Which of the following statement(s) is/are true about the function defined as

$$f(x) = e^{-x} |\cos x| \text{ for } x > 0 ?$$

- (A) Differentiable at $x = \pi/2$
- (B) Differentiable at $x = \pi$
- (C) Differentiable at $x = 3\pi/2$
- (D) Continuous at $x = 2\pi$
- 139. The ratio of the product of eigenvalues to the sum of the eigenvalues of the given matrix

$$\begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$

(round off to nearest integer)

140. The definite integral $\int_1^5 x^2 dx$ is evaluated using four equal intervals by two methods –first by the trapezoidal rule and then by the Simpson's one-third rule. The absolute value of the difference between the two calculations is _____ (round off to two decimal places)

GATE AE - 2022

One Mark Questions.

- 141. The equation of the straight line representing the tangent to the curve $y = x^2$ at the point (1,1) is
 - (A) y = 2x 2
 - (B) x = 2y 1
 - (C) y-1=2(x-1)
 - (D) x 1 = 2(y 1)
- 142. Let \hat{i} , \hat{j} and \hat{k} be the unit vectors in the x, y and z directions, respectively. If the vector $\hat{i} + \hat{j}$ is rotated about positive k by 135°, one gets
 - (A) $-\hat{i}$
- (C) $-\frac{1}{\sqrt{2}}\hat{j}$
- (B) $-\hat{\mathbf{j}}$
- 143. Let x be a real number and $i = \sqrt{-1}$. Then the real part of cos(ix) is
 - (A) sin hx
- (C) cos x
- (B) cos hx
- (D) sin x
- 144. If â, b, ĉ are three mutually perpendicular unit vectors, then $\hat{\mathbf{a}} \cdot (\hat{\mathbf{b}} \times \hat{\mathbf{c}})$ can take the value(s)
- EXCLUSIVE (C) ATE COACHING BY

- 145. The arc length of the parametric curve: x = $\cos \theta$, $y = \sin \theta$, $z = \theta$ from $\theta = 0$ to $\theta = 2\pi$ is equal to _____ (round off to one decimal place).

Two Marks Questions.

- The height of a right circular cone of maximum 146. volume that can be enclosed within a hollow sphere of radius R is
 - (A) R
- (C) 4/3 R
- (B) 5/4 R
- (D) 3/2 R
- 147. Consider the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} - 2 \frac{\mathrm{d} y}{\mathrm{d} x} + y = 0.$$

The boundary conditions are

$$y = 0$$
 and $\frac{dy}{dx} = 1$ at $x = 0$.

Then the value of y at $x = \frac{1}{2}$ is

- (A) 0
- (C) $\sqrt{e}/2$
- (B) \sqrt{e}
- (D) $\sqrt{e/2}$
- 148. Consider the partial differential equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$
 where x, y are real.

If f(x,y) = a(x)b(y), where a(x) and b(y) are real functions, which one of the following statements can be true?

- (A) a(x) is a periodic function and b(y) is a linear function
- (B) both a(x) and b(y) are exponential functions
- (C) a(x) is a periodic function and b(y) is an exponential function
- (D) both a(x) and b(y) are periodic functions
- The real function $y = \sin^2(|x|)$ is 149.
 - (A) continuous for all x
 - (B) differentiable for all x
 - (C) not continuous at x = 0
 - (D) not differentiable at x = 0
- $\vec{v} = x^3 \hat{\imath} + y^3 \hat{\jmath} + z^3 \hat{k}$ is a vector field where $\hat{\imath}$, $\hat{\jmath}$, \hat{k} are the base vectors of a cartesian coordinate system. Using the Gauss divergence theorem, the value of the outward flux of the vector field over the surface of a sphere of unit radius centered at the origin is____ (rounded off to one decimal place).
- The largest eigenvalue of the given matrix is _____.

GATE AE - 2023

One Mark Questions.

- 152. The direction in which a scalar field $\phi(x,y,z)$ has the largest rate of change at any point with position vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is the same as that of the vector
 - (A) ∇φ
- (C) $\phi \vec{r}$
- (B) $\nabla \times (\phi \vec{r})$
- (D) $(\nabla \phi \cdot d\vec{r})\vec{r}$
- 153. If a monotonic and continuous function y = f(x)has only one root in the interval $x_1 < x < x_2$, then
 - (A) $f(x_1)f(x_2) > 0$
- (C) $f(x_1)f(x_2) < 0$
- (B) $f(x_1)f(x_2) = 0$ (D) $f(x_1) f(x_2) = 0$
- Consider the one-dimensional wave equation $\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0$ for $-\infty < x < \infty, t \ge 0$. For an initial condition $u(x, 0) = e^{-x^2}$, the solution at t = 1 is
 - (A) $u(x, 1) = e^{-(x-1)^2}$
- (B) $u(x, 1) = e^{-1}$
- 155. Which of the following statement(s) is/are true with respect to eigenvalues and eigenvectors of [18] a matrix?
 - (A) The sum of the eigenvalues of a matrix equals the sum of the elements of the principal diagonal.
 - (B) If λ is an eigenvalue of a matrix A, then $1/\lambda$ is always an eigenvalue of its transpose (AT).
 - (C) If λ is an eigenvalue of an orthogonal matrix A, then $1/\lambda$ is also an eigenvalue of A.
 - (D) If a matrix has n distinct eigenvalues, it also has n independent eigenvectors.
- 156. The system of equations

$$x - 2y + \alpha z = 0$$

$$2x + y - 4z = 0$$

$$x - y + z = 0$$

has a non-trivial solution for $\alpha = \underline{\hspace{1cm}}$ (Answer in integer)

Two Marks Questions.

- 157. Given the function y(x) = (x + 3)(x 2), for -4 < x < 4. What is the value of x at which the function has a minimum?
 - (A) -3/2
- (C) 1/2
- (B) -1/2
- (D) 3/2
- Consider the equation $\frac{dy}{dx} + ay = \sin \omega x$, where a and ω are constants. Given y = 1 and x = 0, select all correct statement(s) from the following as $x \to \infty$.
 - (A) $y \rightarrow 0$ if $a \neq 0$
 - (B) $y \rightarrow 1$ if a = 0
 - (C) $y \rightarrow A \exp(|a|x)$ if a < 0; A is constant
 - (D) $y \rightarrow B \sin(\omega x + c)$ if a >0; B and C are constant
- Given the vectors

$$\vec{A} = 9\hat{i} - 5\hat{j} + 2\hat{k}$$

$$\vec{B} = 11\hat{i} + 4\hat{j} + \hat{k}$$

$$\vec{C} = -7\hat{i} + 14\hat{j} - 3\hat{k}$$

Which of the following statement(s) is/are TRUE?

- (A) Vectors \vec{A} , \vec{B} and \vec{C} are coplanar.
- (B) The scalar triple product of the vectors \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} is zero.
- (C) \overrightarrow{A} and \overrightarrow{B} are perpendicular.
- (D) \vec{C} is parallel to $\vec{A} \times \vec{B}$
- 160. Consider the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + 4x \frac{dy}{dx} + 2y = 0 \text{ for } x \ge 1$$

with initial conditions $y = 0, \frac{dy}{dx} = 1$ at x = 1.

The value of y at x = 2 is _____. (round off to two decimal places).

GATE AE - 2024

One Mark Questions.

161. The following system of linear equations

$$7x - 3y + z = 0$$

$$3x - y + z = 0$$

$$x - y - z = 0$$

has:

- (A) infinitely many solutions
- (B) a unique solution
- (C) no solution
- (D) three solutions
- Two fair dice with numbered faces are rolled 162. together. The faces are numbered from 1 to 6. The probability of getting odd numbers on both the dice is _____ (rounded off to 2 decimal places).
- 163. Using Trapezoidal rule with one interval, the approximate value of the definite integral:

$$\int_{1}^{2} \frac{\mathrm{dx}}{1 + x^{2}}$$

(rounded off to 2 decimal places).

Two Marks Questions. Given $y = e^{px} \sin qx$, where p and q are nonzero real numbers, the value of the differential expression

$$\frac{d^2y}{dx^2} - 2p\frac{dy}{dx} + (p^2 + q^2)y$$

- (A) 0
- (C) $p^2 + q^2$
- (B) 1
- (D) pq

165. Consider the function

$$f(x) = \begin{cases} x^2 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$$

where x is real. Which of the following statements is/are correct?

- (A) The function is continuous for all x
- (B) The derivative of the function is discontinuous at x = 0
- (C) The derivative of the function is continuous at x = 1
- (D) The function is discontinuous at x = 0
- Consider the matrix $A = \begin{bmatrix} 5 & -4 \\ k & -1 \end{bmatrix}$, where k is a 166. constant. If the determinant of A is 3, then the ratio of the largest eigenvalue of A to constant . (rounded off to 1 decimal place). k is

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visitus

www.iitiansgateclasses.com

Answer Keys Engineering Mathematics

	T					1			
1	В	2	D	3	A	4	D	5	С
6	D	7	В	8	С	9	В	10	С
11	С	12	С	13	A	14	D	15	В
16	D	17	D	18	С	19	С	20	D
21	В	22	A	23	В	24	A	25	D
26	В	27	С	28	D	29	D	30	D
31	С	32	D	33	В	34	В	35	A
36	В	37	С	38	В	39	В	40	С
41	С	42	С	43	A	44	A	45	В
46	A	47	С	48	D	49	D	50	D
51	A	52	В	53	С	54	A	55	С
56	D	57	С	58	С	59	С	60	A
61	D	62	0.26 to 0.27	63	A	64	A	65	A
66	D	67	A	68	A	69	0 to 0	70	0 to 0
71	В	72	D	73	A	74	С	75	В
76	С	77	A	78	D	79	A	80	С
81	D	82	Α	83	В	84	A C	85	A
86	В	87	1.9 to 2.1	88	0.49 to 0.51	89	С	90	В
91	В	92	В	93	В	94	1.0 to 1.0	95	0.0 to 0.0
96	D	97	A	98	A	99	3.13 to 3.15	100	0.56 to 0.58
101	D	102	11.9 to 12.1	103	0 to 0	104	С	105	В
106	В	107	D	108	В	109	0.008 to 0.012	110	С
111	С	112	В	113	В	114	0.0 to 0.0	115	В
116	6.25 to 6.35	117	E GATE (118	CHING BY II	119	SC GRADUA	120	0.5 to 0.5
121	0.16 to 0.17	122	D	123	1 to 1	124	2 to 2	125	0.5 to 0.5
126	C A	127	visi&n c	128	hie Aegr	129	a Cente	130	С
131	A	132	0.9 to 1.1	133	0.010 to 0.012	134	D	135	В
136	0 to 0	137	0.02 to 0.03	138	B; D	139	8 to 8	140	0.66 to 0.68
141	С	142	D	143	В	144	B, C	145	8.6 to 9.1
146	С	147	С	148	С	149	A, B	150	7.4 to 7.7
151	2 to 2	152	A	153	С	154	A	155	A, C, D
156	3 to 3	157	В	158	C, D	159	A, B	160	0.24 to 0.26
161	A	162	0.24 to 0.26	163	0.35 to 0.35	164	A	165	A, B, C
166	1.4 to 1.6								_

Admission Open for

GATE 2025/26

Live Interactive Classes **AEROSPACE ENGINEERING**

Visit us www.iitiansgateclasses.com