

GATE -ME MECHANICAL VIBRATION

Table Of Content

Basic of Mechanical Vibrations and Undamped	01
Free Vibration	
Free Damped Vibration	05
Forced Vibration	09

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

Online Mock Tests

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

MECHANICAL VIBRATIONS

Chapter 1: Basic of Mechanical Vibrations and Undamped Free Vibration

Free (Natural) Vibration:

Elastic vibrations in which there is no friction and external forces after the initial releases of the body are known as a free or natural vibration.

Damped Vibrations:

When the energy of a vibrating system is gradually dissipated by friction and other resistances. The vibrations are said to be damped. The vibrations gradually cause and the system rests in its equilibrium position.

Forced Vibrations:

When a repeated force continuously acts on a system, the vibrations are said to be forced. The frequency of the vibrations is that of the applied force and is independent of their own natural frequency of vibrations.

Periodic Motion:

A motion which repeats after equal interval time. **Example:** Simple harmonic motion (SHM)

Time Period:

Time to taken for complete one cycle. Frequency (f) – No. of cycle per unit time $\omega \ = \ 2\pi f(rad/sec)$

Amplitude:

The maximum displacement of a vibrating body from the mean position.

Natural Frequency (ω_n):

- It is a dynamic characteristic of system.
- It is a load independent.
- It is the frequency of free vibration system.

Resonance:

When frequency of system becomes equal to natural frequency of system.

Amplitude of vibration becomes excessive.

Damping

The resistance to the motion of vibrating system.

Basics of Springs

Equation of Stiffness of a Spring:
 For A helical Spring

$$k_{equivalent} = k_{eq} = \frac{d^4G}{8D^3n}$$

d – Wire diameter

D – Coil diameter

G – Shear modulus

n - Number of turns

2. Springs in Series:

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$$

Springs in parallel

$$k_{eq} = k_1 + k_2 + k_3 + \dots + k_n$$

3. Equivalent Springs of System

System	Formula of Stiffness
Rod Under Axial Load	$k = \frac{EA}{l}$
← ← ← Tapered Rod	$k = \frac{\pi E D d}{4l}$
Fixed-Fixed Beam	$k = \frac{192EI}{l^3}$
Cantilever Beam	$k = \frac{3EI}{l^3}$
Simply Supported	$k = \frac{48EI}{l^3}$
Axial motion of Piston in a cylinder (Dashpot damper).	$C_{eq} = \frac{\mu 3\pi D^3 l}{4d^3} \left(1 + \frac{2d}{D}\right)$

4. Combination of Dampers:

- a. Parallel $C_{eq} = C_1 + C_2 + \cdots + C_n$
- b. Series: $\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots \frac{1}{C_n}$

5. Categories of Vibration:

- a. $m\ddot{x} + kx = 0$; Free undamped
- b. $m\ddot{x} + c\dot{x} + kx = 0$; Free damped
- c. $m\ddot{x} + kx = F(x)$; Forced undamped
- d. $m\ddot{x} + c\dot{x} + kx =$

F(x); Forced damped

Undamped Free Vibration:

Translational Vibration

Fig (a) Single degree of freedom

For initial state equilibrium, mg = $k\Delta$

Where Δ = state deflection due to mass

When deflected by x then equation can be written as,

$$m\ddot{x} + kx = 0$$
(1)

This is the equation of simple harmonic and is analogous to,

$$\ddot{x} + \omega_n^2 x = 0$$

By comparing above equation with equation

(1a), we can find

$$\omega_n = \sqrt{\frac{k}{m}}$$

By putting $\frac{k}{m}$ from initial static equilibrium,

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{g}{\Delta}}$$

Equation of motion for

$$m\ddot{x} + kx = 0$$

$$x = X \sin(\omega_n t + \phi) \dots \dots \dots (2)$$

Initial Conditions

If the motion is started by displacing the mass through a distance x_0 and giving a velocity V_0 , then the solution of equation (2) can be find as,

$$t = 0$$
, $x = x_0$; $\dot{x} = V_0$

$$x = X \sin(\omega_n t + \phi)$$

$$x_0 = X \sin \phi$$

$$\dot{x} = X\omega_n \cos(\omega_n t + \phi)$$

$$V_0 = X\omega_n \cos \phi$$

$$\rightarrow x_0^2 + \left(\frac{V_0}{\omega_n}\right)^2 = X^2$$

$$X = \sqrt{\left[x_0^2 + \left(\frac{V_0}{\omega_n}\right)^2\right]}$$

$$\tan \phi = \frac{x_0}{V_{\star}/\omega}$$

$$\phi = \tan^{-1} \left[\frac{x_0}{V_0/\omega_n} \right]$$

Solution can be plotted graphically

Rotational Vibration

Let Pendulum is displayed by an angle $\boldsymbol{\theta}$ of

Here G is the centre of gravity.

Restoring torque = $mgsin \theta \times l = mgl. \theta$

Inertial torque = $I\ddot{\theta}$

$$\therefore I\ddot{\theta} + mgl. \theta = 0$$

$$\omega_n = \sqrt{\frac{mgl}{I}}$$

Torsional Vibration

Fig: Torsional Vibration of a Disc $J_0\ddot{\theta} + k_t\theta = 0 \label{eq:constraint}$

$$J_0\ddot{\theta} + k_t\theta = 0$$

$$\omega_n = \left(\frac{k_t}{I_0}\right)^{1/2}$$

And the period in seconds and frequency of vibration in cycles per second are

$$\tau_n = 2\pi \Big(\frac{J_0}{k_t}\Big)^{1/2}$$

$$f_{\rm n} = \frac{1}{2\pi} \left(\frac{k_t}{J_0}\right)^{1/2}$$

Whirling of Shaft:

e = eccentricity of rotor mass from shaft axis.

y = Transverse displacement of shaft

$$y = \frac{e}{\left(\frac{\omega_n}{\omega}\right)^2 - 1}$$

Whirling speed = $\omega = \omega_n = \sqrt{\frac{k}{m}}$ rad/sec

Whirling speed/Higher critical speed Due to own weight of shaft (W)

 $\omega_1 = First/Basic speed$

$$n^4 = \frac{W}{gEI} \omega^2$$
$$\omega_n = n^2 \omega_1$$

$$\omega_n=n^2\omega_1$$

2nd fundamental frequency

3rd fundamental frequency

Chapter 2: Free Damped Vibration

Types of Damping

Viscous Damping

$$F \,=\, \frac{\mu A}{t} \, \dot{x}$$

Where, A = Area of the plate;

t = Thickness

 μ = Coefficient of absolute viscosity of the film

$$F = c \dot{x}$$

Where,
$$c = \frac{\mu A}{t}$$

Where, c is viscous damping coefficient.

Energy Dissipation in Viscous Damping

$$\Delta E = \pi c \omega A^2$$

Differential Equation of Damped Free

Translational Vibration

The equation of motion,

$$m\ddot{x} + c\dot{x} + kx = 0$$

Free body diagram

For damped ($m\ddot{x} + c\dot{x} + kx = 0$)

Using
$$x = Ae^{-st}$$

$$S_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m}$$
$$= \frac{-c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{k}{m}}$$

IITians GATE

Critical Damping Coefficient:

$$C_c = 2m\omega_n = 2\sqrt{km}$$

Natural Frequency:

$$\omega_n = \sqrt{k/m}$$

Damping Factor or Damping Ratio $\zeta = \frac{C}{C_C}$

Now,
$$\frac{C}{2m} = \frac{C}{C_c} \cdot \frac{C_c}{2m} = \zeta \omega_n$$

So.

$$S_{1.2} = (-\zeta \pm \sqrt{\zeta^2 - 1}) \omega_n$$

If $C > C_c$ or $\zeta > 1$, system is over damped $C = C_c \text{ or } \zeta = 1 \text{, system is critically-damped}$

 $C < C_c$ or $\zeta < 1$, system is under-damped

Over Damped System ($\zeta > 1$)

General solution,

$$x = C_1 e^{(-\zeta + \sqrt{\zeta^2 - 1}) \omega_n t} + C_2 e^{(-\zeta - \sqrt{\zeta^2 - 1}) \omega_n t}$$

For Intial condition, $x = X_0$ And $\dot{x} = 0$ $\rightarrow At t = 0$

Solving for the condition,

$$\begin{split} x \; &= \; \frac{X_0}{2\sqrt{\zeta^2-1}} \Big[\Big(-\zeta \\ &+ \; \sqrt{\zeta^2-1} \Big) \, e^{\left(-\zeta + \sqrt{\zeta^2-1}\right) \omega_n t} \\ &+ \Big(-\zeta \\ &- \; \sqrt{\zeta^2-1} \Big) \, e^{\left(-\zeta - \sqrt{\zeta^2-1}\right) \omega_n t} \; \Big] \end{split}$$

Critical Damped System ($\zeta = 1$)

$$S_1 = S_2 = -\omega_n$$

Solution, $x = (C_1 + C_2 t)e^{-\omega_n t}$

For initial condition, $\begin{cases} x = X_0 \\ \text{And } \dot{x} = 0 \end{cases}$

$$\rightarrow$$
 At t = 0

$$\rightarrow x = X_0(1 + \omega_n t) e^{-\omega_n t}$$

- Critical damping is smallest damping for which response is non-oscillatory
- With Critical damping system will have steep fall in displacement

Under – Damped System ($\zeta < 1$)

$$x \, = \, \frac{X_0}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \, \sin(\omega_d t + \varphi) \, \text{Where,} \, \varphi$$

$$= \tan^{-1}\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right)$$
 Amplitude
$$= \frac{X_0}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}$$

Which is seems to decay exponentially with time. Theoretically, the system will never come to rest, although the amplitude of vibration may become infinitely small.

Period,
$$T_d = \frac{2\pi}{\omega_d} = \frac{2\pi}{\omega_n(\sqrt{1-\zeta^2})}$$

Damped Frequency:

$$\omega_d = \omega_n \, \sqrt{1-\zeta^2}$$

Logarithmic Decrement:

It is the ratio of any two successive amplitudes for an under-damped system vibrating freely is constant and it is a function of damping only

$$\delta = \frac{1}{n} \ln \left(\frac{x_0}{x_n} \right) = \frac{2\pi \zeta}{\sqrt{1 - \zeta^2}} \approx 2\pi \zeta (\zeta << 1)$$

Here, number of amplitudes = n+1Number of cycles = n - 0 = n

Differential Equation of Damped Free Torsional Vibration

$$J_0 \ddot{\theta} + \dot{c_t} \, \dot{\ddot{\theta}} + k_t \theta = 0$$

$$\omega_d = \sqrt{1 - \zeta^2 \omega_n}$$

$$\omega_n = \sqrt{k_t/J_0}$$
 ADJATES

$$\zeta = \frac{c_1}{c_{tc}} = \frac{c_t}{2J_0\omega_n} = \frac{c_t}{2\sqrt{k_t J_0}}$$

Note- In case of rotational vibration also equation of motion and other quantities will be like rotational vibration

• Coulomb Damping

This type of damping occurs when two machine parts rubs against each other, dry or un-lubricated. The damping resistance in the case is practically constant and is independent of the rubbing velocity.

General expression for coulomb damping is:

$$F = \mu R_N$$

Where, μ = coefficient of friction R_N = Normal reaction

- The equation of motion is nonlinear with Coulomb damping, whereas it is linear with viscous damping.
- 2. The natural frequency of the system is unaltered with the addition of Coulomb dumping, whereas it is reduced with the addition of viscous damping.
- 3. The motion is periodic with Coulomb damping, whereas it can be nonperiodic

in a viscously damped (overdamped) system.

- 4. The system comes to rest after some lime with Coulomb damping, whereas the motion theoretically continues forever (perhaps with an infinitesimally small amplitude) with viscous and hysteresis damping.
- 5. The amplitude reduces linearly with Coulomb damping, whereas it reduces exponentially with viscous damping.
- of motion is reduced by tire amount 4fiN/k, so the amplitudes at the end of any two consecutive cycles are related:

$$X_{n} = X_{n-1} - \frac{4\mu N}{k}$$
III / IISO GRADUATES

Structural Damping

This type of damping is due to the internal friction of the molecules. The stress – strain diagram for vibrating body is not a straight line but forms a hysteresis loop. The area of which represents the energy dissipated due to molecular friction per cycle per unit volume.

The energy loss per cycle, $E=\pi k\lambda A^2$

Chapter 3: Forced Vibration

 $m\ddot{x} + c\dot{x} + kx = F_0 \sin \omega t$

Above differential equation will have two part in solution

The complementary function is obtained from

$$m\ddot{x} + c\dot{x} + kx = 0$$

$$x_c = A_2 e^{-\zeta \omega_n t} \sin \left[\left(\sqrt{1 - \zeta^2} \right) \omega_n t + \phi_2 \right]$$

If the particular solution is \boldsymbol{x}_p then

$$x_p = X\sin(\omega t - \phi)$$

Then,
$$X = \frac{X_{st}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\frac{\omega}{\omega_n}\right]^2}}$$

$$\phi = \tan^{-1} \left[\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \right]$$

$$\begin{split} x &= x_c + x_p \\ &= A_2 e^{-\zeta \omega_n t} \sin[\left(\sqrt{1 - \zeta^2}\right) \omega_n t + \phi_2] \\ &+ \frac{X_{st}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta \frac{\omega}{\omega_n}\right]^2}} \sin(\omega t - \zeta^2) \end{split}$$

Magnification Factor

The ratio of the steady state amplitude to the zero frequency (static) deflection i.e., $\frac{X}{X_{st}}$ is defined as the magnification factor and is denoted by M.F.

$$M. F. = \frac{X}{X_{st}}$$

GATE-ME-QUICK REVISION FORMULA SHEET

$$=\frac{1}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2\zeta\frac{\omega}{\omega_{n}}\right]^{2}}}$$

At resonance,
$$\frac{\omega}{\omega_n} = 1$$

$$M.F. = \frac{X}{X_{st}} = \frac{1}{2\zeta}$$

under damping $\uparrow \Rightarrow \zeta \downarrow$

⇒ MF ↑⇒Amplitude ↑⇒Fatigue life ↓↓

Quality Factor

The magnification factor at resonance is known as quality factor and is denoted by R.

$$R = \frac{1}{2\zeta}$$

Vibration Isolation:

$$\epsilon = \frac{F_{\rm T}}{F_{\rm o}}$$

If $0 < \epsilon < 1$ (Machine support)

If $\epsilon > 1$ (Machine adverse)

 $\epsilon = Machine Transmissibility$

$$\epsilon = \frac{\sqrt{1 + \left(2\zeta\left(\frac{\omega}{\omega_n}\right)\right)^2}}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}}$$

 ε depends on ζ and ω/ω_n

Motion Transmissibility:

$$\epsilon = \frac{\text{Aplitude of mass(X)}}{\text{Amplitude of foundation (Y)}}$$

$$m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0$$

$$\epsilon = \frac{X}{Y} = \pm \frac{\sqrt{k^2 + (c\omega)^2}}{\sqrt{(k - m\omega^2)^2 + (c\omega)^2}}$$

Admission Open for

GATE 2024/25

Live Interactive Classes

MECHANICAL ENGINEERING

For more Information Call Us

Visit us www.iitiansgateclasses.com