

Table Of Content

Jet Propulsion Cycles	05
Compressor	09
Turbine	10
Combustion	11

OUR ACHIEVERS

GATE-2023 AE

SRIRAM R SSN COLLEGE CHENNAI AIR - 2

Akriti PEC, Chandigarh AIR - 6

SHREYASHI SARKAR IIEST, SHIBPUR AIR - 8

YOKESH K MIT, CHENNAI AIR - 11

HRITHIK S PATIL RVCE, BANGALORE AIR - 14

And Many More

GATE-2022 AE

SUBHROJYOTI BISWAS IIEST, SHIBPUR AIR - 4

SANJAY. S AMRITA UNIV, COIMBATORE AIR - 7

AKILESH . G HITS, CHENNAI AIR - 7

D. MANOJ KUMAR AMRITA UNIV, COIMBATORE AIR - 10

DIPAYAN PARBAT IIEST, SHIBPUR AIR - 14

And Many More

GATE-2021 AE

NILADRI PAHARI IIEST, SHIBPUR AIR - 1

VISHAL .M MIT, CHENNAI AIR - 2

SHREYAN .C IIEST, SHIBPUR AIR - 3

VEDANT GUPTA RTU, KOTA AIR - 5

SNEHASIS .C IIEST, SHIBPUR AIR - 8

And Many More

OUR PSU JOB ACHIEVERS DRDO & ADA Scientist B

Job Position for Recruitment (2022-23) Based on GATE AE score

Mr. Abhilash K (Amrita Univ Coimbatore)

Ms. Ajitha Nishma V (IIST Trivendrum)

Mr. Dheeraj Sappa (IIEST Shibpur)

Ms. F Jahangir (MIT Chennai)

Mr. Goutham (KCG College Chennai)

Mr. M Kumar (MVJ College Bangalore)

Mr. Mohit Kudal (RTU Kota)

Mr. Niladhari Pahari (IIEST Shibpur)

Mr. Nitesh Singh (Sandip Univ Nashik)

Mr. Ramanathan A (Amrita Univ Coimbatore)

Ms. Shruti S Rajpara (IIEST Shibpur)

HAL DT ENGINEER

Job Position for Recruitment (2023)

Mr. Anantha Krishan A.G (Amrita Univ Coimbatore)

Mr. S.S Sanjay (Amrita Univ Coimbatore)

Mr. Shashi Kanth M (Sastra Univ Taniore)

Mr. Vagicharla Dinesh (Lovely Professional Univ Panjab)

FATHIMA J (MIT, CHENNAI) HAL DT ENGINEER 2022

SADSIVUNI TARUN (SASTRA TANJORE) HAL DT ENGINEER 2021

MOHAN KUMAR .H (MVJCE, BANGALORE) HAL DT ENGINEER 2022

VIGNESHA .M (MIT, CHENNAI) MRS E-II CRL BEL

ARATHY ANILKUMAR NAIR (AMRITA UNIV, COIMBATORE) HAL DT ENGINEER 2021

RAM GOPAL SONI (GVIET, PUNJAB) CEMILAC LAB, DRDO

JET PROPULSION

■ JET PROPULSION CYCLES

Ideal Cycle:

Net work done.

$$W_{\text{net}} = c_P(T_{03} - T_{04}) - c_P(T_{02} - T_{01})$$

$$W_{net} = W_T - W_C$$

Where, c_P = specific heat of gas at constant pressure.

 $T_o = Total temperature$

 W_T = Work done per unit mass flow in turbine.

 $W_C =$ work done per unit mass flow in compressor.

Compression ratio or Expansion Ratio:

$$r = \left(\frac{T_{02}}{T_{01}}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$= \left(\frac{T_{03}}{T_{04}}\right)^{\frac{\gamma}{\gamma-1}}$$
 Exclusive GATE COACHING

$$r = \frac{p_{02}}{p_{01}} = \frac{p_{03}}{p_{04}}$$
 A division of PhIE

Efficiency: $\eta = 1 - \left(\frac{1}{r}\right)^{\frac{\gamma-1}{\gamma}}$

Thrust Produced by the Jet Engine:

Where,

 C_i = Forward speed

 $\dot{m}_a = Mass flow rate of air$

 $p_a = Atmospheric pressure$

 $A_i = Inlet area$

 $\dot{m}_f = Mass flow rate of fuel$

 C_i = Jet exhaust speed

 $p_e = Exit plane pressure.$

 A_e = Exit plane area.

$$F = \underbrace{\dot{m}_g C_j - \dot{m}_a C_i}_{\substack{Momentum \\ thrust}} + \underbrace{(p_e - p_a)Ae}_{\substack{Pressure \\ thrust}}$$

$$F = \dot{m}_a [(1 + f)C_j - C_i] + (p_e - p_a)Ae$$

Where, $f = \frac{\dot{m}_f}{\dot{m}_a}$ is fuel to air ratio

Optimum Thrust:

$$F_{opt} = \dot{m}_a [(1+f)C_j - C_i]$$

Specific Thrust:

$$F_s = \frac{F}{\dot{m}_a} = (1 + f)C_j - C_i + (p_e - p_a)\frac{Ae}{\dot{m}_a}$$

Specific Fuel Consumption (SFC)

(Note: Defined differently)

1. Thrust specific fuel consumption (TSFC)

$$TSFC = \frac{\dot{m}_f}{F} \left(\frac{kg}{(N \cdot s)} \right)$$
$$= \frac{\dot{m}_f}{F} \times 3600 \text{ (kg/(N.hr))}$$
$$= \frac{f}{F_5} \times 3600 \text{ (kg/(N.hr))}$$

Note: this equation is not valid for turbofan engines.

2. Power Specific fuel consumption

$$SFC = \frac{\dot{m}_f}{T.P} (kg/(W.hr))$$
$$= \frac{\dot{m}_f}{T.P} \times 3600 (kg/(W.hr))$$

Where, T.P is thrust power T.P = F. C_i

Propulsive Efficiency:

$$\eta_p = \frac{Thrust\ power}{Propulsice\ power}$$

$$=\frac{F\cdot C_{i}}{\frac{1}{2}\dot{m}_{a}\left(C_{j}^{2}-C_{i}^{2}\right)}$$

$$\eta_p = \frac{2\alpha}{1+\alpha}$$

where,
$$\alpha = \frac{C_i}{C_j}$$

Intake Performance:

1. Isentropic efficiency:

$$\eta_{\rm in} = \frac{T_{01}' - T_{\rm a}}{T_{01} - T_{\rm a}}$$

2. Ram Efficiency:

$$\eta_R = \frac{p_{01} - p_a}{p_{0a} - p_a}$$

Ram pressure rise = $p_{01} - p_a$

Pressure recovery factor =
$$\frac{p_{01}}{p_{0a}}$$

Compressor Performance:

Adiabatic/Isentropic efficiency

$$\eta_c = \frac{T_{02}' - T_{01}}{T_{02} - T_{01}}$$

$$\eta_{c} = \frac{T_{01} \left(\frac{T_{02}'}{T_{01}} - 1 \right)}{T_{02} - T_{01}}$$

$$\eta_{c} = \frac{T_{01} \left(\pi_{c}^{\frac{\gamma-1}{\gamma}} - 1\right)}{T_{02} - T_{01}}$$

Where,
$$\pi_c = \frac{p_{02}}{p_{01}}$$

Polytropic Efficiency

$$\eta_{c} = \frac{\pi_{c}^{\frac{\gamma-1}{\gamma}} - 1}{\frac{\gamma-1}{\eta_{\infty,c}\gamma} - 1}$$

$$0$$

where,
$$\eta_{\infty,c} = \frac{\gamma-1}{\gamma} \cdot \frac{n}{n-1}$$

And $n \rightarrow polytropic index$.

Combustion Chamber

Performance:

$$\dot{m}_g c_{p_g} T_{03} = \dot{m}_a c_{p_a} + T_{02} + \eta_b \ \dot{m}_f Q_{cv}$$

$$f = \frac{c_{p_g} T_{03} - c_{p_a} T_{02}}{\eta_b Q_{cv} - c_{p_g} T_{03}}$$

where, $\dot{m}_g = \dot{m}_a + \dot{m}_f$

 $\eta_b = \text{Combustion efficiency}$

 c_{p_a} , c_{p_g} = Specific heat at constant pressure

for air and gas, respectively.

 $Q_{cv} =$ Lower heating value/Calorific value of fuel.

Turbine Performance:

Adiabatic/Isotropic Efficiency:

$$\eta_T = \frac{T_{03} - T_{04}}{T_{03} - T_{04}'}$$

$$\eta_{T} = \frac{T_{03} - T_{04}}{T_{03} \left(1 - \left(\frac{1}{\pi_{t}}\right)^{\frac{\gamma - 1}{\gamma}}\right)}$$

Where, $\pi_t = \frac{p_{03}}{p_{04}}$

Nozzle Performance:

Adiabatic efficiency:

$$\eta_{\text{noz}} = \frac{T_{04} - T_e}{T_{04} - T_e'}$$

For chocking

$$\frac{p_{04}}{p_e} < \frac{p_{04}}{p_a}$$

Where, $p_e = nozzle$ exit plane pressure.

 $T_e = nozzle$ exit plane temperature.

$$p_c = Chocked pressure$$

$$\frac{p_{04}}{p_{c}} = \left[\frac{1}{1 - \frac{1}{\eta_{\text{noz}}} \frac{\gamma - 1}{\gamma + 1}}\right]^{\frac{\gamma}{\gamma - 1}}$$

 $p_e = p_a$, for optimum expansion

bi iii/iioc Ok

For choked flow

$$C_j = \sqrt{\gamma R T_c}$$
 Center

For unchoked flow

$$C_{j} = \sqrt{2c_{p}(T_{04} - T_{e})}$$

Turbofan Engine Analysis:

By pass ratio (
$$\beta$$
) = $\frac{\dot{m}_c}{\dot{m}_h}$ = $\frac{Mass flow of clod air}{mass flow of hot air}$

$$\dot{m}_a = \dot{m}_c + \dot{m}_h$$

$$\dot{m}_h = \frac{\dot{m}_a}{\beta+1} \text{,} \quad \dot{m}_c = \frac{\beta \ \dot{m}_a}{\beta+1}$$

Where, $\dot{m}_a = air mass flow rate$

 \dot{m}_c = Bypass flow rate or cold flow rate

 $\dot{m}_h = hot flow rate$

Thrust: (Assuming Optimum Thrust)

$$F = F_{cold} + F_{hot}$$
$$= \dot{m}_h [C_{jh}] + \dot{m}_c [C_{jc}] - \dot{m}_a C_i$$

$$F = \dot{m}_a \left[\frac{1}{\beta + 1} C_{jh} + \frac{\beta}{\beta + 1} C_{jc} \right] - \dot{m}_a C_i$$

$$F_{s} = \frac{F}{\dot{m}_{a}} = \frac{C_{jh}}{\beta + 1} + \frac{\beta}{\beta + 1} C_{jc} - C_{i}$$

Ramjet Engine Performance:

Ideal Ramjet:

$$M_i = M_{\rm e} \,$$

$$\frac{C_i}{\sqrt{\gamma R T_a}} = \frac{C_j}{\sqrt{\gamma_g R_g T_e}}$$

Fundamental of Rotating Machines

Euler's Energy Equation

$$E = \frac{P}{\dot{m}} = W = u_2 C_{t_2} - u_1 C_{t_1}$$

Where, $P \rightarrow Power$

 $\dot{m} \rightarrow mass flow rate of the fluid$

 $W \rightarrow$ work done on the fluid per unit mass flow rate.

 $u \rightarrow Peripheral velocity/blade velocity vector.$

E → Energy transfer

Modified form:

$$E = W = \frac{C_2^2 - C_1^2}{2} + \frac{u_2^2 - u_1^2}{2} + \frac{w_1^2 - w_2^2}{2}$$

 $\overrightarrow{C} \rightarrow Absolute velocity vector$

 $\overrightarrow{w} \rightarrow \text{Relative velocity vector}$

Velocity vector relation for rotating machines

$$\vec{C} = \vec{u} + \vec{w}$$

Control volume analysis to find work done:

$$W = h_{02} - h_{01}$$

$$W = c_{\rm p}(T_{02} - T_{01})$$

Important non-dimensional Variables for turbomachinery:

$$\left(\frac{p_{02}}{p_{01}}, \frac{T_{02}}{T_{01}}, \frac{\dot{m}\sqrt{RT_{01}}}{D^2P_{01}}, \frac{ND}{\sqrt{RT_{01}}}\right)$$

COMPRESSOR

Centrifugal Compressor:

Work done: $W_c = u_2C_{t2} - u_1C_{t1}$

$$u = \frac{\pi DN}{60}$$

Where, $D \rightarrow Diameter$

 $N \rightarrow revolution per minute$

 $C_t \rightarrow tangential component of absolute$ velocity

For axial entry of fluid at the entry

$$W_c = u_2 C_{t_2}$$

$$W_c = \sigma u_2^2$$

$$\sigma = \frac{C_{t_2}}{u_2}$$
 called slip factor

$$0 < \sigma \le 1$$

$$W_c = \Omega \sigma u_2^2$$

 $\Omega \rightarrow \text{Power input factor } \Omega \geq 1$

Efficiency:

$$\pi_{c} = \left[1 + \frac{\eta_{c}}{T_{01}} \left(T_{02} - T_{01}\right)\right]^{\frac{\gamma}{\gamma - 1}}$$

$$W_c = c_p(T_{02} - T_{01}) = \Omega \sigma u_2^2$$

$$\pi_c = \left[1 + \frac{\eta_c}{T_{01}} \frac{\Omega \sigma u_2^2}{c_p}\right]^{\frac{\gamma}{\gamma - 1}}$$

Mass Flow Rate Calculation:

$$\dot{m}_a = (\pi db) \rho_2 C_{r_2}$$

At the exit of centrifugal compressor

Where, $d \rightarrow diameter$ of impeller

 $b \rightarrow$ width of the impeller blade

 $\rho_2 \rightarrow$ Density of air at the impeller exit

 $C_{r_2} \rightarrow Radial \ velocity \ at the exit$

Axial Flow Compressor:

Work done,
$$W_c = u (C_{t_2} - C_{t_1})$$

= $uC_a(\tan \alpha_2 - \tan \alpha_1)$

$$W_c = uC_a(\tan \beta_1 - \tan \beta_2)$$

Where, $\alpha_1, \alpha_2 \rightarrow$ Absolute air angles at the entry and exit of stage. Measured with respect to axial velocity.

 $\beta_1, \beta_2 \rightarrow \text{Relative air angles/Blade angles at}$ the entry and exit of the stage.

Velocity Triangle:

$$u = C_{t_1} + w_{t_1} = C_{t_2} + w_{t_2}$$

$$\frac{u}{C_a} = \tan \alpha_1 + \tan \beta_1$$

$$\frac{1}{\Phi} = \tan \alpha_2 + \tan \beta_2$$

$$\frac{1}{\phi} = \tan \alpha_2 + \tan \beta_2$$

Where, $\phi = \frac{C_a}{H}$ called flow co-efficient

$$W_c = \Omega u C_a (\tan \beta_1 - \tan \beta_2)$$

$$W_c = \Omega u^2 \varphi(\tan \beta_1 - \tan \beta_2)$$

 $\Omega \rightarrow$ Power input factor.

Degree of Reaction (R):

$$R = \frac{h_2 - h_1}{h_3 - h_1}$$

$$R = \frac{\Phi}{2} (\tan \beta_1 + \tan \beta_2)$$

For 50% reaction stage

$$\begin{array}{c} R=0.5 \\ \alpha_1=\beta_2, \alpha_2=\beta_1 \\ C_1=w_2, C_2=w_1 \end{array} \begin{array}{c} \text{Symmetric velocity} \\ \text{triangles at the} \\ \text{entry and exit of} \\ \text{the stage.} \end{array}$$

Mass Flow Calculations:

$$\dot{m}_{a}=\rho C_{a}\frac{\pi}{4}(D_{2}^{2}-D_{1}^{2})$$

$$\dot{m}_a = \rho C_a \pi d_m h$$

 $D_2 \rightarrow tip diameter$

 $D_1 \rightarrow hub diameter$

$$\dot{m}_a = PC_a\pi d_m h$$

 $d_m \rightarrow Mean diameter$

 $h \rightarrow Height of the blade$

Stage Efficiency:

$$\begin{split} \eta_{c_s} &= \frac{T_{01} \left(\frac{\gamma - 1}{\eta_{c_s}^{\gamma}} - 1 \right)}{(T_{02} - T_{01})_{stage}} \\ \pi_{cs} &= \left[1 + \frac{\eta_{cs}}{T_{01}} (T_{02} - T_{01})_{stage} \right]^{\frac{\gamma}{\gamma - 1}} \\ \pi_{cs} &= \left[1 + \frac{\eta_{cs}}{T_{01}} \frac{\Omega u C_a (\tan \beta_1 - \tan \beta_2)}{c_p} \right]^{\frac{\gamma}{\gamma - 1}} \end{split}$$

TURBINE

Axial Flow Turbine:

Stage work done:

$$W_T = u(C_{t_0} + C_{t_0})$$

$$W_T = uC_a(\tan \alpha_2 + \tan \alpha_3)$$

$$W_T = uC_a(\tan\beta_2 + \tan\beta_3)$$

Stage Velocity Triangle

$$\begin{aligned} u &= C_{t_2} - w_{t_2} = w_{t_3} - C_{t_3} \\ u &= C_a \left(\tan \alpha_2 - \tan \beta_2 \right) \\ \Rightarrow \frac{1}{\phi} &= \tan \alpha_2 - \tan \beta_2 = \tan \beta_3 - \tan \alpha_3 \end{aligned}$$

Blade Loading Co-efficient(ψ):

$$\psi = \frac{W_T}{u^2}$$

$$\psi = \phi(\tan \beta_2 + \tan \beta_3)$$

$$= \phi(\tan \alpha_2 + \tan \alpha_3)$$

Efficiency of Stage:

$$\eta_{\tau_s} = \frac{T_{03} - T_{04}}{T_{03} \left(1 - \left(\frac{p_{04}}{p_{03}}\right)^{\frac{\gamma - 1}{\gamma}}\right)}$$

$$T_{03} - T_{04} = \eta_{T_S} T_{03} \left(1 - \left(\frac{1}{\pi_t} \right)^{\frac{\gamma - 1}{\gamma}} \right)$$

$$T_{03} - T_{04} = \frac{uC_a(\tan\beta_2 + \tan\beta_3)}{C_n}$$

Degree of Reaction (R)

$$R = \frac{\varphi}{2} (\tan \beta_3 - \tan \beta_2)$$

$$R = \frac{1}{2} + \frac{\Phi}{2} (\tan \beta_3 - \tan \alpha_2)$$

$$R = 1 + \frac{\varphi}{2} (\tan \alpha_3 - \tan \alpha_2)$$

For 50% reaction stage

$$\begin{array}{c} R=0.5 \\ \alpha_2=\beta_3, \alpha_3=\beta_2 \\ C_2=w_3, C_3=w_2 \end{array} \right\} \begin{array}{c} \text{Stage velocity} \\ \text{triangle at the} \\ \text{entry and exit} \\ \text{are anti-symmetric} \end{array}$$

COMBUSTION

Combustion Chamber

Performance:

Pressure loss factor:

$$PLF = \frac{\Delta p_o}{\left(\frac{\dot{m}_a^2}{2\rho A_m^2}\right)} = K_1 + K_2 \left(\frac{T_{03}}{T_{02}} - 1\right)$$

Where, $K_1 \rightarrow Cold$ has co-efficient.

 $K_2 \rightarrow Hot loss co-efficient$

 $T_{03} \rightarrow Combustion$ exit temperature

 $T_{02} \rightarrow Combustion entry temperature$

 $\Delta p_o \rightarrow Total$ pressure loss

 $\dot{m}_a \rightarrow Mass flow rate$

 $\rho \rightarrow density$ at the entry

A_m → Maximum cross-section area of

Combustion Chemistry:

Assuming Hydrocarbon fuel

$$\begin{aligned} \mathsf{C_xHy} + \left(\mathbf{x} + \frac{\mathbf{y}}{4} \right) (\mathsf{O_2} + 3.76 \; \mathsf{N_2}) \\ &\to \mathsf{xCO_2} + \frac{\mathbf{y}}{2} \mathsf{H_2O} \\ &+ \left(\mathbf{x} + \frac{\mathbf{y}}{4} \right) 3.76 \; \mathsf{N_2} + \mathsf{Energy} \; \uparrow \end{aligned}$$

Stoichiometric Fuel-to-Air Ratio (f_s) :

$$f_s = \frac{\sum_{fuel}(Molecular\ weight) \times no\ of\ moles}{\sum_{air}(Molecular\ weight) \times no\ of\ moles}$$

$$f_s = \frac{12 \times x + 1 \times y}{32 \times \left(x + \frac{y}{4}\right) + 3.76 \times 28 \times \left(x + \frac{y}{4}\right)}$$

For Alkanes, $C_x H_y \rightarrow C_n H_{2n}$.

$$f_s = \frac{7n+1}{34.32(3n+1)}$$

Note: This expression is valid only for

alkanes.

Ex: Ethane, Methane etc...

Equivalence Ratio (φ):

$$\varphi = \frac{f_{actual}}{f_{stoichiometric}}$$

Note: $\phi < 1 \rightarrow$ Fuel lean combustion

 $\phi > 1$ Fuel rich combustion

combustion chamber livision of PhIE Learning Center

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

OUR COURSES

Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests

Module Wise Tests

Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Admission Open for

GATE 2025/26

Live Interactive Classes

AEROSPACE ENGINEERING

