

GATE-AE AIRCRAFT STRUCTURES

Table Of Content

Unsymmetrical Bending	05
Flexural-Shear Flow	06
Torsion of Thin-walled Structures	07
Aircraft Structural Component	08

OUR ACHIEVERS

GATE-2023 AE

SRIRAM R
SSN COLLEGE CHENNAI
AIR - 2

Akriti PEC, Chandigarh AIR - 6

SHREYASHI SARKAR IIEST, SHIBPUR AIR - 8

YOKESH K MIT, CHENNAI AIR - 11

HRITHIK S PATIL RVCE, BANGALORE AIR - 14

And Many More

GATE-2022 AE

SUBHROJYOTI BISWAS IIEST, SHIBPUR AIR - 4

SANJAY. S AMRITA UNIV, COIMBATORE AIR - 7

AKILESH . G HITS, CHENNAI AIR - 7

D. MANOJ KUMAR AMRITA UNIV, COIMBATORE AIR - 10

DIPAYAN PARBAT IIEST, SHIBPUR AIR - 14

And Many More

GATE-2021 AE

NILADRI PAHARI IIEST, SHIBPUR AIR - 1

VISHAL .M MIT, CHENNAI AIR - 2

SHREYAN .C IIEST, SHIBPUR AIR - 3

VEDANT GUPTA RTU, KOTA AIR - 5

SNEHASIS .C IIEST, SHIBPUR AIR - 8

And Many More

OUR PSU JOB ACHIEVERS DRDO & ADA Scientist B

Job Position for Recruitment (2022-23) Based on GATE AE score

Mr. Abhilash K (Amrita Univ Coimbatore)

Ms. Ajitha Nishma V (IIST Trivendrum)

Mr. Dheeraj Sappa (IIEST Shibpur)

Ms. F Jahangir (MIT Chennai)

Mr. Goutham (KCG College Chennai)

Mr. M Kumar (MVJ College Bangalore)

Mr. Mohit Kudal (RTU Kota)

Mr. Niladhari Pahari (IIEST Shibpur)

Mr. Nitesh Singh (Sandip Univ Nashik)

Mr. Ramanathan A (Amrita Univ Coimbatore)

Ms. Shruti S Rajpara (IIEST Shibpur)

HAL DT ENGINEER

Job Position for Recruitment (2023)

Mr. Anantha Krishan A.G (Amrita Univ Coimbatore)

Mr. S.S Sanjay (Amrita Univ Coimbatore)

Mr. Shashi Kanth M (Sastra Univ Taniore)

Mr. Vagicharla Dinesh (Lovely Professional Univ Panjab)

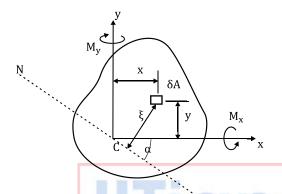
FATHIMA J (MIT, CHENNAI) HAL DT ENGINEER 2022

SADSIVUNI TARUN (SASTRA TANJORE) HAL DT ENGINEER 2021

MOHAN KUMAR .H (MVJCE, BANGALORE) HAL DT ENGINEER 2022

VIGNESHA .M (MIT, CHENNAI) MRS E-II CRL BEL

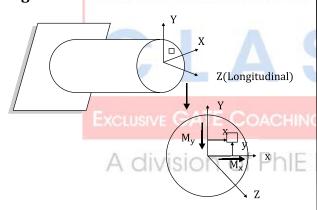
ARATHY ANILKUMAR NAIR (AMRITA UNIV, COIMBATORE) HAL DT ENGINEER 2021



RAM GOPAL SONI (GVIET, PUNJAB) CEMILAC LAB, DRDO

AIRCRAFT STRUCTURES

UNSYMMETRICAL BENDING


For an unsymmetrical cross section under complex bending

y My My

fig (a)

Sign Convention

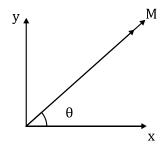
Z

BY IIT / IISC GRADUATES fig (b)

earning Center

Resolution of bending moments sign depending on the size of θ . In both cases, for the sense of M shown

- $M_x = Msin\theta$
- $M_y = M\cos\theta$ This gives,
- For $\theta < \frac{\pi}{2}$, M_x and M_y positive (fig (a)) and for $\theta > \frac{\pi}{2}$, M_x positive and M_y negative (fig (b)).


To produce to same effect or same kind of stress (compressive or tension), moment need to follow each other.

Moments in Inclined Plane

- The moment in YZ plane is always about X- axis.
- The moment in XZ plane is always about Y- axis.

Moments About Inclined Axis

Resolving Bending Moment along x and y axis

- $M_x = M\cos\theta$
- $M_v = -M\sin\theta$
- For all values of θ

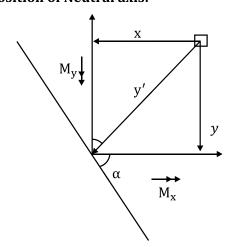
Direct stress due to Unsymmetrical Bending:

$$\sigma_{\mathrm{z}} = \left(\frac{I_{\mathrm{xx}}M_{\mathrm{y}} - I_{\mathrm{xy}}M_{\mathrm{x}}}{I_{\mathrm{xx}}I_{\mathrm{yy}} - I_{\mathrm{xy}}^2}\right)x + \left(\frac{I_{\mathrm{yy}}M_{\mathrm{x}} - I_{\mathrm{xy}}M_{\mathrm{y}}}{I_{\mathrm{xx}}I_{\mathrm{yy}} - I_{\mathrm{xy}}^2}\right)y$$

$$\sigma_{z} = k_{1}x + k_{2}y$$

here

$$k_1 = \frac{(I_{xx}M_y - I_{xy}M_x)}{(I_{xx}I_{yy} - I_{xy}^2)}$$
 SIVE GATE COACHI


$$k_{2} = \frac{(I_{yy}M_{x} - I_{xy}M_{y})}{(I_{xx}I_{yy} - I_{xy}^{2})}$$
Change of shear flow along section
$$\frac{\partial q}{\partial s} = -t \left[\frac{I_{xx}\frac{\partial M_{y}}{\partial z} - I_{xy}\frac{\partial M_{x}}{\partial z}}{I_{xx}I_{yy} - I_{xy}^{2}} \right] x$$

For Symmetric C/S

$$I_{xy} = 0$$

$$\sigma_z = \frac{M_{xy}}{I_{yy}} x + \frac{M_x}{I_{xx}} y$$

Position of Neutral axis:

At neutral axis

$$\sigma_z = k_1 x + k_2 y = 0$$

$$\Rightarrow k_1 x_{NA} + k_2 y_{NA} = 0$$

$$\Rightarrow \frac{-y_{NA}}{x_{NA}} = \tan \alpha = \frac{k_1}{k_2}$$

Where α is inclination of neutral axis α is measure in x-axis in clockwise direction

FLEXURAL-SHEAR FLOW

For thin-walled Open Section

Change of shear flow along section

$$\frac{\partial q}{\partial s} = -t \left[\frac{I_{xx} \frac{\partial M_y}{\partial z} - I_{xy} \frac{\partial M_x}{\partial z}}{I_{xx} I_{yy} - I_{xy}^2} \right] x$$

$$-t \left[\frac{I_{yy} \frac{\partial M_{x}}{\partial z} - I_{xy} \frac{\partial M_{y}}{\partial z}}{I_{xx} I_{yy} - I_{xy}^{2}} \right] y$$

$$V_x = \frac{\partial M_y}{\partial z}$$
 and $V_y = \frac{\partial M_x}{\partial z}$

$$\frac{\partial q}{\partial s} = -t \frac{\left(I_{xx}V_x - I_{xy}V_y\right)}{\left(I_{xx}I_{yy} - I_{xy}^2\right)} x$$

$$-t\frac{\left(I_{yy}V_{y}-I_{xy}V_{x}\right)}{\left(I_{xx}I_{yy}-I_{xy}^{2}\right)}y$$

$$q_{s2} - q_{s1} = \int_{s_1}^{s_2} \frac{\partial q}{\partial s} ds$$

Note: For thin-walled section at the free end (open end) shear flow is considered as zero (Boundary condition)

For thin walled idealized (boom) section

$$\begin{split} q_s &= -\frac{\left(I_{xx}V_n - I_{xy}V_y\right)}{\left(I_{xx}I_{yy} - I_{xy}^2\right)} \Sigma Ax \\ &- \frac{\left(I_{xx}V_y - I_{xy}V_y\right)}{\left(I_{xx} - I_{yy} - I_{xy}^2\right)} \Sigma Ay \end{split}$$

For Closed Section

$$q = q_s + q_{s,0}$$

Shear Centre

- Shear centre is a point, if transverse loading is applied through this point, and then there will be no twist of the section. It will be only undergoing bending.
- It is also the point of twist or centre of the twist or centre of flexure.
- Shear centre is cross section property and it is independence of loading.
- For any section, if there is a junction, the junction itself will be a shear centre.

- For doubly symmetric section, shear centre and centroid is same.
- For single symmetric section, shear centre lies on axis of symmetry.

TORSION OF THIN-WALLED STRUCTURES

For Solid shaft

 $\tau \propto r$ (radial distance)

 $\theta \propto l$ (Longitudnal length)

Torsional Formula

$$\frac{\tau}{r} = \frac{T}{J} = \frac{G\theta}{L} \hspace{0.5cm} \tau_{solid \; shaft} = \frac{16T}{\pi d^3} \label{eq:tau_sol}$$

For Thin-Walled single cell closed section:

Shear Flow $q = \tau t$

Bredth -Batho Theory:

$$T = 2Aq$$

$$\tau = \frac{q}{t} = \frac{T}{2At}$$

Angle of twist per unit length:

$$\frac{d\theta}{dx} = \frac{T}{4A^2G} \oint \frac{ds}{dt} = \frac{q}{2AG} \oint \frac{ds}{t}$$

$$T = GJ \frac{d\theta}{dx}$$

Torsional Constant:

$$J = \frac{4A^2}{\int \frac{ds}{t}}$$

Torsional Rigidity

$$GJ = \frac{4A^2}{\int \frac{ds}{Gt}} \rightarrow torstonal Rigidity$$

 $J=I_P \to \text{for circular crossection} = \ 2\pi r^3 t$

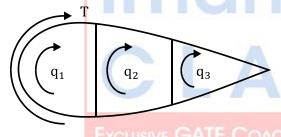
Thin-Walled single cell Open section:

Torsional formula

$$\frac{\tau}{t} = \frac{T}{J} = \frac{G\theta}{L}$$

Torsion constant
$$J = \sum \frac{bt^3}{3}$$
 or $\int \frac{t^3 ds}{3}$

Max shear stress


$$\tau_{max} \, = \, \frac{T}{J} t$$

Here t is thickness

Angle of twist per unit length

$$\frac{\theta}{L} = \frac{T}{GJ}$$

Thin-Walled multi cell closed section

Bredt Batho Equation

$$T = 2A_1q_1 + 2A_2q_2 + 2A_3q_3$$
(1)

Compatibility equation

$$\theta'_1 = \theta'_2 = \theta'_3$$
(2)

Note: - For multi shell there is less twist than single shell.

■■ AIRCRAFT STRUCTURAL COMPONENT

Functions of Skin or Cover

- It transmits the aerodynamic farces to the longitudinal and transverse supporting members by plate and membrane action
- 2. It develops shearing stresses which react to the applied torsional moments and shear forces.
- It acts with the longitudinal members in resisting the applied bending and axial loads.
- 4. It acts with longitudinal members in resisting the hoop or circumferential load when the structure is pressurized.
- 5. In addition to theses, it provides an aerodynamic surface and cover for the contents of the vehicle.
 - Spar webs play a role that is like function 2 of the skin.

Functions of Longitudinal, Stringers or Stiffeners (Longerons)

Learning Center

- They resist bending and axial loads along with the skin.
- They divide the skin into small panels and thereby increase its buckling and failure stresses.
- 3. They act with the skin in resisting axial loads caused by pressurization.
 - The spar caps in an aerodynamic surface perform functions 1 and 2

Functions of Frames, Ribs and Rings (Bulkheads)

- 1. Maintain cross section shape
- 2. Distribute concentrated loads into the structure and redistribute stresses around structural discontinuities.
- 3. Establish the column length and provide end restraint for the longitudinal to increase their column buckling stress.
- 4. Provide edge restraint for the skin panels and thereby increase the plate buckling stress of these elements.
- 5. Act with the skin in resisting the circumferential loads due to pressurization.

CLASSES

EXCLUSIVE GATE COACHING BY IIT/IISC GRADUATES

A division of PhIE Learning Center

OUR COURSES

GATE Online Coaching

Course Features

Live Interactive Classes

E-Study Material

Recordings of Live Classes

TARGET GATE COURSE

Course Features

Recorded Videos Lectures

Online Doubt Support

E-Study Materials

Online Test Series

Distance Learning Program

Course Features

E-Study Material

Topic Wise Assignments (e-form)

Online Test Series

Online Doubt Support

Previous Year Solved Question Papers

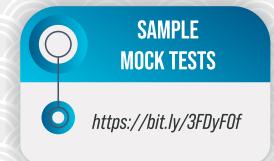
OUR COURSES

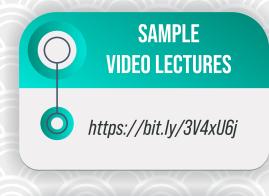
Online Test Series

Course Features

Topic Wise Tests

Subject Wise Tests


Module Wise Tests



Complete Syllabus Tests

More About IGC

Follow us on:

For more Information Call Us +91-97405 01604

Visit us

www.iitiansgateclasses.com

Admission Open for

GATE 2025/26

Live Interactive Classes

AEROSPACE ENGINEERING

